L(s) = 1 | + (−0.299 + 0.299i)2-s + (1.72 − 0.125i)3-s + 1.82i·4-s + (2.19 − 0.414i)5-s + (−0.479 + 0.554i)6-s + (−0.976 − 0.976i)7-s + (−1.14 − 1.14i)8-s + (2.96 − 0.431i)9-s + (−0.533 + 0.781i)10-s − 1.78·11-s + (0.227 + 3.14i)12-s + (−2.32 + 2.75i)13-s + 0.584·14-s + (3.74 − 0.990i)15-s − 2.95·16-s + (−3.26 − 3.26i)17-s + ⋯ |
L(s) = 1 | + (−0.211 + 0.211i)2-s + (0.997 − 0.0721i)3-s + 0.910i·4-s + (0.982 − 0.185i)5-s + (−0.195 + 0.226i)6-s + (−0.368 − 0.368i)7-s + (−0.404 − 0.404i)8-s + (0.989 − 0.143i)9-s + (−0.168 + 0.247i)10-s − 0.537·11-s + (0.0657 + 0.908i)12-s + (−0.643 + 0.765i)13-s + 0.156·14-s + (0.966 − 0.255i)15-s − 0.739·16-s + (−0.790 − 0.790i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.838 - 0.544i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.838 - 0.544i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.46149 + 0.433067i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.46149 + 0.433067i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.72 + 0.125i)T \) |
| 5 | \( 1 + (-2.19 + 0.414i)T \) |
| 13 | \( 1 + (2.32 - 2.75i)T \) |
good | 2 | \( 1 + (0.299 - 0.299i)T - 2iT^{2} \) |
| 7 | \( 1 + (0.976 + 0.976i)T + 7iT^{2} \) |
| 11 | \( 1 + 1.78T + 11T^{2} \) |
| 17 | \( 1 + (3.26 + 3.26i)T + 17iT^{2} \) |
| 19 | \( 1 - 6.18T + 19T^{2} \) |
| 23 | \( 1 + (-0.696 + 0.696i)T - 23iT^{2} \) |
| 29 | \( 1 + 7.33T + 29T^{2} \) |
| 31 | \( 1 - 6.61iT - 31T^{2} \) |
| 37 | \( 1 + (5.21 + 5.21i)T + 37iT^{2} \) |
| 41 | \( 1 + 6.45T + 41T^{2} \) |
| 43 | \( 1 + (1.78 + 1.78i)T + 43iT^{2} \) |
| 47 | \( 1 + (-5.69 + 5.69i)T - 47iT^{2} \) |
| 53 | \( 1 + (1.74 - 1.74i)T - 53iT^{2} \) |
| 59 | \( 1 - 9.15iT - 59T^{2} \) |
| 61 | \( 1 - 1.01T + 61T^{2} \) |
| 67 | \( 1 + (3.72 + 3.72i)T + 67iT^{2} \) |
| 71 | \( 1 - 5.49T + 71T^{2} \) |
| 73 | \( 1 + (-1.35 + 1.35i)T - 73iT^{2} \) |
| 79 | \( 1 - 10.2iT - 79T^{2} \) |
| 83 | \( 1 + (7.93 + 7.93i)T + 83iT^{2} \) |
| 89 | \( 1 - 3.75iT - 89T^{2} \) |
| 97 | \( 1 + (-6.92 - 6.92i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.87016110400973775409956265361, −11.85854139036652442577224447573, −10.27736559071254346198541973444, −9.319086034029838600968771970461, −8.806006855150748579189088713783, −7.39076067209975349985572779652, −6.89251171985681651512743157498, −5.00752147582323177160742657322, −3.49403919483253015186214309893, −2.28063219249753663380681192224,
1.88806099426389216575016440729, 3.01634738618464354722191785729, 5.04662363486820841760961006797, 6.04447783207447774822852441208, 7.37757356653980381474836818380, 8.719667920693660030075057479170, 9.669262449812916113101426655649, 10.05034749728898634491457705726, 11.14096763456124860118445577751, 12.73636791858483160666396089040