L(s) = 1 | + (−1 + i)2-s + (−2 − 2i)3-s − 2i·4-s + 4·6-s + (2 + 2i)8-s + 5i·9-s − 6·11-s + (−4 + 4i)12-s − 4·16-s + (−4 + 4i)17-s + (−5 − 5i)18-s + 2i·19-s + (6 − 6i)22-s − 8i·24-s + (4 − 4i)27-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + (−1.15 − 1.15i)3-s − i·4-s + 1.63·6-s + (0.707 + 0.707i)8-s + 1.66i·9-s − 1.80·11-s + (−1.15 + 1.15i)12-s − 16-s + (−0.970 + 0.970i)17-s + (−1.17 − 1.17i)18-s + 0.458i·19-s + (1.27 − 1.27i)22-s − 1.63i·24-s + (0.769 − 0.769i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 - 0.229i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.973 - 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (2 + 2i)T + 3iT^{2} \) |
| 7 | \( 1 + 7iT^{2} \) |
| 11 | \( 1 + 6T + 11T^{2} \) |
| 13 | \( 1 - 13iT^{2} \) |
| 17 | \( 1 + (4 - 4i)T - 17iT^{2} \) |
| 19 | \( 1 - 2iT - 19T^{2} \) |
| 23 | \( 1 - 23iT^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + 37iT^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 + (6 + 6i)T + 43iT^{2} \) |
| 47 | \( 1 + 47iT^{2} \) |
| 53 | \( 1 - 53iT^{2} \) |
| 59 | \( 1 - 6iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + (-6 + 6i)T - 67iT^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (12 + 12i)T + 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (2 + 2i)T + 83iT^{2} \) |
| 89 | \( 1 + 18iT - 89T^{2} \) |
| 97 | \( 1 + (12 - 12i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.86543843523725153069004658553, −10.79435693539942004941676460471, −10.25028305894285021328916407748, −8.536829961717031401451695817128, −7.71703435992756767366116558877, −6.80108311468957659426418931131, −5.86748235504678641306859102020, −5.01538615927079748835865910659, −1.94465861321050862254360420318, 0,
2.82311213713830116792009835201, 4.44058643613850798526754055740, 5.31096702673219580020982660690, 6.90045596591976007798566833346, 8.239392002889202088141311778017, 9.468078530657130202143325614055, 10.19208672449491571158597493896, 10.99296282352174022324289171520, 11.51002869178452917126363312877