L(s) = 1 | + (−0.142 − 0.989i)3-s + (0.841 − 0.540i)4-s + (−1.61 + 0.474i)7-s + (−0.959 + 0.281i)9-s + (−0.654 − 0.755i)12-s + (1.25 + 1.45i)13-s + (0.415 − 0.909i)16-s + (0.273 + 0.0801i)19-s + (0.698 + 1.53i)21-s + (−0.654 − 0.755i)25-s + (0.415 + 0.909i)27-s + (−1.10 + 1.27i)28-s + (−0.544 + 0.627i)31-s + (−0.654 + 0.755i)36-s − 1.30·37-s + ⋯ |
L(s) = 1 | + (−0.142 − 0.989i)3-s + (0.841 − 0.540i)4-s + (−1.61 + 0.474i)7-s + (−0.959 + 0.281i)9-s + (−0.654 − 0.755i)12-s + (1.25 + 1.45i)13-s + (0.415 − 0.909i)16-s + (0.273 + 0.0801i)19-s + (0.698 + 1.53i)21-s + (−0.654 − 0.755i)25-s + (0.415 + 0.909i)27-s + (−1.10 + 1.27i)28-s + (−0.544 + 0.627i)31-s + (−0.654 + 0.755i)36-s − 1.30·37-s + ⋯ |
Λ(s)=(=(201s/2ΓC(s)L(s)(0.604+0.796i)Λ(1−s)
Λ(s)=(=(201s/2ΓC(s)L(s)(0.604+0.796i)Λ(1−s)
Degree: |
2 |
Conductor: |
201
= 3⋅67
|
Sign: |
0.604+0.796i
|
Analytic conductor: |
0.100312 |
Root analytic conductor: |
0.316720 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ201(89,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 201, ( :0), 0.604+0.796i)
|
Particular Values
L(21) |
≈ |
0.6981391720 |
L(21) |
≈ |
0.6981391720 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.142+0.989i)T |
| 67 | 1+(0.654+0.755i)T |
good | 2 | 1+(−0.841+0.540i)T2 |
| 5 | 1+(0.654+0.755i)T2 |
| 7 | 1+(1.61−0.474i)T+(0.841−0.540i)T2 |
| 11 | 1+(0.654+0.755i)T2 |
| 13 | 1+(−1.25−1.45i)T+(−0.142+0.989i)T2 |
| 17 | 1+(−0.415−0.909i)T2 |
| 19 | 1+(−0.273−0.0801i)T+(0.841+0.540i)T2 |
| 23 | 1+(0.959−0.281i)T2 |
| 29 | 1−T2 |
| 31 | 1+(0.544−0.627i)T+(−0.142−0.989i)T2 |
| 37 | 1+1.30T+T2 |
| 41 | 1+(−0.415−0.909i)T2 |
| 43 | 1+(1.10+0.708i)T+(0.415+0.909i)T2 |
| 47 | 1+(0.959−0.281i)T2 |
| 53 | 1+(−0.415+0.909i)T2 |
| 59 | 1+(0.142+0.989i)T2 |
| 61 | 1+(0.118+0.258i)T+(−0.654+0.755i)T2 |
| 71 | 1+(−0.415+0.909i)T2 |
| 73 | 1+(−0.345−0.755i)T+(−0.654+0.755i)T2 |
| 79 | 1+(−0.857−0.989i)T+(−0.142+0.989i)T2 |
| 83 | 1+(0.654+0.755i)T2 |
| 89 | 1+(0.959+0.281i)T2 |
| 97 | 1+0.284T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.37316789988311214094465472473, −11.77742852179887133279016578852, −10.75911629619471249498339384613, −9.584435066882081977514518694399, −8.568699543251315869326137889269, −6.98180936821416719743331092434, −6.49447491935548997873910217474, −5.67468369759030647901819692801, −3.34961119824483874849099281838, −1.90019167931578965433003940820,
3.17567798050577701878043735311, 3.66784614225372011237558485805, 5.66117966350476714326642956885, 6.50703595247778087716436363889, 7.79182293091384234891211102079, 9.005040470679977833814445365941, 10.12255699316218524143192195233, 10.72573052314612602483091281341, 11.72283761235807029896309806241, 12.87256373979270582427048921721