L(s) = 1 | + (−0.142 − 0.989i)3-s + (0.841 − 0.540i)4-s + (−1.61 + 0.474i)7-s + (−0.959 + 0.281i)9-s + (−0.654 − 0.755i)12-s + (1.25 + 1.45i)13-s + (0.415 − 0.909i)16-s + (0.273 + 0.0801i)19-s + (0.698 + 1.53i)21-s + (−0.654 − 0.755i)25-s + (0.415 + 0.909i)27-s + (−1.10 + 1.27i)28-s + (−0.544 + 0.627i)31-s + (−0.654 + 0.755i)36-s − 1.30·37-s + ⋯ |
L(s) = 1 | + (−0.142 − 0.989i)3-s + (0.841 − 0.540i)4-s + (−1.61 + 0.474i)7-s + (−0.959 + 0.281i)9-s + (−0.654 − 0.755i)12-s + (1.25 + 1.45i)13-s + (0.415 − 0.909i)16-s + (0.273 + 0.0801i)19-s + (0.698 + 1.53i)21-s + (−0.654 − 0.755i)25-s + (0.415 + 0.909i)27-s + (−1.10 + 1.27i)28-s + (−0.544 + 0.627i)31-s + (−0.654 + 0.755i)36-s − 1.30·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 201 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.604 + 0.796i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 201 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.604 + 0.796i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6981391720\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6981391720\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.142 + 0.989i)T \) |
| 67 | \( 1 + (0.654 + 0.755i)T \) |
good | 2 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 5 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 7 | \( 1 + (1.61 - 0.474i)T + (0.841 - 0.540i)T^{2} \) |
| 11 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 13 | \( 1 + (-1.25 - 1.45i)T + (-0.142 + 0.989i)T^{2} \) |
| 17 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 19 | \( 1 + (-0.273 - 0.0801i)T + (0.841 + 0.540i)T^{2} \) |
| 23 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.544 - 0.627i)T + (-0.142 - 0.989i)T^{2} \) |
| 37 | \( 1 + 1.30T + T^{2} \) |
| 41 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 43 | \( 1 + (1.10 + 0.708i)T + (0.415 + 0.909i)T^{2} \) |
| 47 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 53 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 59 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 61 | \( 1 + (0.118 + 0.258i)T + (-0.654 + 0.755i)T^{2} \) |
| 71 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 73 | \( 1 + (-0.345 - 0.755i)T + (-0.654 + 0.755i)T^{2} \) |
| 79 | \( 1 + (-0.857 - 0.989i)T + (-0.142 + 0.989i)T^{2} \) |
| 83 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 89 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 97 | \( 1 + 0.284T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.37316789988311214094465472473, −11.77742852179887133279016578852, −10.75911629619471249498339384613, −9.584435066882081977514518694399, −8.568699543251315869326137889269, −6.98180936821416719743331092434, −6.49447491935548997873910217474, −5.67468369759030647901819692801, −3.34961119824483874849099281838, −1.90019167931578965433003940820,
3.17567798050577701878043735311, 3.66784614225372011237558485805, 5.66117966350476714326642956885, 6.50703595247778087716436363889, 7.79182293091384234891211102079, 9.005040470679977833814445365941, 10.12255699316218524143192195233, 10.72573052314612602483091281341, 11.72283761235807029896309806241, 12.87256373979270582427048921721