L(s) = 1 | + 2i·2-s − 2·4-s − 5·11-s + 4i·13-s − 4·16-s − 4i·17-s + 5·19-s − 10i·22-s − 6i·23-s − 8·26-s − 5·29-s − 9·31-s − 8i·32-s + 8·34-s + 10i·37-s + 10i·38-s + ⋯ |
L(s) = 1 | + 1.41i·2-s − 4-s − 1.50·11-s + 1.10i·13-s − 16-s − 0.970i·17-s + 1.14·19-s − 2.13i·22-s − 1.25i·23-s − 1.56·26-s − 0.928·29-s − 1.61·31-s − 1.41i·32-s + 1.37·34-s + 1.64i·37-s + 1.62i·38-s + ⋯ |
Λ(s)=(=(2025s/2ΓC(s)L(s)(0.447+0.894i)Λ(2−s)
Λ(s)=(=(2025s/2ΓC(s+1/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2025
= 34⋅52
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
16.1697 |
Root analytic conductor: |
4.02115 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2025(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 2025, ( :1/2), 0.447+0.894i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1−2iT−2T2 |
| 7 | 1−7T2 |
| 11 | 1+5T+11T2 |
| 13 | 1−4iT−13T2 |
| 17 | 1+4iT−17T2 |
| 19 | 1−5T+19T2 |
| 23 | 1+6iT−23T2 |
| 29 | 1+5T+29T2 |
| 31 | 1+9T+31T2 |
| 37 | 1−10iT−37T2 |
| 41 | 1+7T+41T2 |
| 43 | 1+2iT−43T2 |
| 47 | 1−2iT−47T2 |
| 53 | 1+8iT−53T2 |
| 59 | 1+T+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1+6iT−67T2 |
| 71 | 1+T+71T2 |
| 73 | 1+8iT−73T2 |
| 79 | 1+12T+79T2 |
| 83 | 1+6iT−83T2 |
| 89 | 1+9T+89T2 |
| 97 | 1+14iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.796757103659955882184750512393, −8.033181550631331755586115812966, −7.28821866874789272140674721459, −6.87971926453899959377091503690, −5.83493122272084627541816387112, −5.15552066072193444170338386412, −4.56791650727092598518936736394, −3.16139029288812680023044000618, −2.05394936162397305553317567306, 0,
1.41367908081764886833082515348, 2.45010986367889804375991163493, 3.30246899933004115351570197787, 3.95899605993864123804780182089, 5.38310096248894106468536261852, 5.61615316638313121438803924235, 7.26881987381792152724521784217, 7.70116598363739981728345139898, 8.745638184639293078654162317345