L(s) = 1 | + 2i·2-s − 2·4-s − 5·11-s + 4i·13-s − 4·16-s − 4i·17-s + 5·19-s − 10i·22-s − 6i·23-s − 8·26-s − 5·29-s − 9·31-s − 8i·32-s + 8·34-s + 10i·37-s + 10i·38-s + ⋯ |
L(s) = 1 | + 1.41i·2-s − 4-s − 1.50·11-s + 1.10i·13-s − 16-s − 0.970i·17-s + 1.14·19-s − 2.13i·22-s − 1.25i·23-s − 1.56·26-s − 0.928·29-s − 1.61·31-s − 1.41i·32-s + 1.37·34-s + 1.64i·37-s + 1.62i·38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 - 2iT - 2T^{2} \) |
| 7 | \( 1 - 7T^{2} \) |
| 11 | \( 1 + 5T + 11T^{2} \) |
| 13 | \( 1 - 4iT - 13T^{2} \) |
| 17 | \( 1 + 4iT - 17T^{2} \) |
| 19 | \( 1 - 5T + 19T^{2} \) |
| 23 | \( 1 + 6iT - 23T^{2} \) |
| 29 | \( 1 + 5T + 29T^{2} \) |
| 31 | \( 1 + 9T + 31T^{2} \) |
| 37 | \( 1 - 10iT - 37T^{2} \) |
| 41 | \( 1 + 7T + 41T^{2} \) |
| 43 | \( 1 + 2iT - 43T^{2} \) |
| 47 | \( 1 - 2iT - 47T^{2} \) |
| 53 | \( 1 + 8iT - 53T^{2} \) |
| 59 | \( 1 + T + 59T^{2} \) |
| 61 | \( 1 + 2T + 61T^{2} \) |
| 67 | \( 1 + 6iT - 67T^{2} \) |
| 71 | \( 1 + T + 71T^{2} \) |
| 73 | \( 1 + 8iT - 73T^{2} \) |
| 79 | \( 1 + 12T + 79T^{2} \) |
| 83 | \( 1 + 6iT - 83T^{2} \) |
| 89 | \( 1 + 9T + 89T^{2} \) |
| 97 | \( 1 + 14iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.796757103659955882184750512393, −8.033181550631331755586115812966, −7.28821866874789272140674721459, −6.87971926453899959377091503690, −5.83493122272084627541816387112, −5.15552066072193444170338386412, −4.56791650727092598518936736394, −3.16139029288812680023044000618, −2.05394936162397305553317567306, 0,
1.41367908081764886833082515348, 2.45010986367889804375991163493, 3.30246899933004115351570197787, 3.95899605993864123804780182089, 5.38310096248894106468536261852, 5.61615316638313121438803924235, 7.26881987381792152724521784217, 7.70116598363739981728345139898, 8.745638184639293078654162317345