L(s) = 1 | + (−1.58 + 4.74i)5-s + 3i·7-s + 9.48i·11-s + 21i·13-s − 12.6·17-s + 31·19-s + 22.1·23-s + (−20 − 15.0i)25-s + 47.4i·29-s + 16·31-s + (−14.2 − 4.74i)35-s + 27i·37-s − 47.4i·41-s + 48i·43-s + 12.6·47-s + ⋯ |
L(s) = 1 | + (−0.316 + 0.948i)5-s + 0.428i·7-s + 0.862i·11-s + 1.61i·13-s − 0.744·17-s + 1.63·19-s + 0.962·23-s + (−0.800 − 0.600i)25-s + 1.63i·29-s + 0.516·31-s + (−0.406 − 0.135i)35-s + 0.729i·37-s − 1.15i·41-s + 1.11i·43-s + 0.269·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(−0.948−0.316i)Λ(3−s)
Λ(s)=(=(2160s/2ΓC(s+1)L(s)(−0.948−0.316i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
−0.948−0.316i
|
Analytic conductor: |
58.8557 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1889,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1), −0.948−0.316i)
|
Particular Values
L(23) |
≈ |
1.575804409 |
L(21) |
≈ |
1.575804409 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(1.58−4.74i)T |
good | 7 | 1−3iT−49T2 |
| 11 | 1−9.48iT−121T2 |
| 13 | 1−21iT−169T2 |
| 17 | 1+12.6T+289T2 |
| 19 | 1−31T+361T2 |
| 23 | 1−22.1T+529T2 |
| 29 | 1−47.4iT−841T2 |
| 31 | 1−16T+961T2 |
| 37 | 1−27iT−1.36e3T2 |
| 41 | 1+47.4iT−1.68e3T2 |
| 43 | 1−48iT−1.84e3T2 |
| 47 | 1−12.6T+2.20e3T2 |
| 53 | 1+41.1T+2.80e3T2 |
| 59 | 1+37.9iT−3.48e3T2 |
| 61 | 1+T+3.72e3T2 |
| 67 | 1+21iT−4.48e3T2 |
| 71 | 1+28.4iT−5.04e3T2 |
| 73 | 1−27iT−5.32e3T2 |
| 79 | 1−T+6.24e3T2 |
| 83 | 1+110.T+6.88e3T2 |
| 89 | 1−113.iT−7.92e3T2 |
| 97 | 1+93iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.299517670251271803437503627346, −8.567824488023899396229593337206, −7.38554573052155404741237600961, −7.01900723288827215981748115446, −6.33786976491996886054093974411, −5.16241608849150930528975852097, −4.42180453147960649836156957675, −3.38837375895475496290333927180, −2.52404370638662269982798470188, −1.48630706301953191401225376768,
0.45428692620403345115813374308, 1.07858715357387718607577657506, 2.72853579326341594798068331471, 3.58020344766317732482899897263, 4.53155380859506497815264655145, 5.40048490831536428858916961246, 5.94708946174985058045013498214, 7.21061448928144323311936943483, 7.85385253735654769566826614630, 8.471604528785469544818426363408