Properties

Label 2-2175-1.1-c3-0-43
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $128.329$
Root an. cond. $11.3282$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.58·2-s − 3·3-s + 23.1·4-s + 16.7·6-s + 10.0·7-s − 84.5·8-s + 9·9-s − 5.15·11-s − 69.4·12-s − 15.1·13-s − 56.0·14-s + 286.·16-s + 50.8·17-s − 50.2·18-s − 1.55·19-s − 30.1·21-s + 28.7·22-s − 187.·23-s + 253.·24-s + 84.4·26-s − 27·27-s + 232.·28-s − 29·29-s + 288.·31-s − 924.·32-s + 15.4·33-s − 283.·34-s + ⋯
L(s)  = 1  − 1.97·2-s − 0.577·3-s + 2.89·4-s + 1.13·6-s + 0.541·7-s − 3.73·8-s + 0.333·9-s − 0.141·11-s − 1.67·12-s − 0.322·13-s − 1.06·14-s + 4.48·16-s + 0.725·17-s − 0.657·18-s − 0.0188·19-s − 0.312·21-s + 0.278·22-s − 1.70·23-s + 2.15·24-s + 0.636·26-s − 0.192·27-s + 1.56·28-s − 0.185·29-s + 1.66·31-s − 5.10·32-s + 0.0815·33-s − 1.43·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(128.329\)
Root analytic conductor: \(11.3282\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5300715546\)
\(L(\frac12)\) \(\approx\) \(0.5300715546\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 \)
29 \( 1 + 29T \)
good2 \( 1 + 5.58T + 8T^{2} \)
7 \( 1 - 10.0T + 343T^{2} \)
11 \( 1 + 5.15T + 1.33e3T^{2} \)
13 \( 1 + 15.1T + 2.19e3T^{2} \)
17 \( 1 - 50.8T + 4.91e3T^{2} \)
19 \( 1 + 1.55T + 6.85e3T^{2} \)
23 \( 1 + 187.T + 1.21e4T^{2} \)
31 \( 1 - 288.T + 2.97e4T^{2} \)
37 \( 1 + 171.T + 5.06e4T^{2} \)
41 \( 1 + 229.T + 6.89e4T^{2} \)
43 \( 1 + 55.5T + 7.95e4T^{2} \)
47 \( 1 - 193.T + 1.03e5T^{2} \)
53 \( 1 + 354.T + 1.48e5T^{2} \)
59 \( 1 - 143.T + 2.05e5T^{2} \)
61 \( 1 + 350.T + 2.26e5T^{2} \)
67 \( 1 + 540.T + 3.00e5T^{2} \)
71 \( 1 - 824.T + 3.57e5T^{2} \)
73 \( 1 - 1.11e3T + 3.89e5T^{2} \)
79 \( 1 - 469.T + 4.93e5T^{2} \)
83 \( 1 + 472.T + 5.71e5T^{2} \)
89 \( 1 - 179.T + 7.04e5T^{2} \)
97 \( 1 - 1.38e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.604389846844277074381163316871, −8.018163657593143326916947157963, −7.49883693081091241844420372708, −6.55455180124857066532830854082, −5.98089078747578026899201812129, −4.95877991317201460049764387969, −3.46903230153238085588388802014, −2.28544979449810426100276865762, −1.48100851543201539151580972751, −0.47472420733111024207544476469, 0.47472420733111024207544476469, 1.48100851543201539151580972751, 2.28544979449810426100276865762, 3.46903230153238085588388802014, 4.95877991317201460049764387969, 5.98089078747578026899201812129, 6.55455180124857066532830854082, 7.49883693081091241844420372708, 8.018163657593143326916947157963, 8.604389846844277074381163316871

Graph of the $Z$-function along the critical line