L(s) = 1 | + (−1.32 − 0.5i)2-s − 3.25i·3-s + (1.50 + 1.32i)4-s − 5-s + (−1.62 + 4.31i)6-s − 3.25·7-s + (−1.32 − 2.50i)8-s − 7.62·9-s + (1.32 + 0.5i)10-s + (3.25 − 0.613i)11-s + (4.31 − 4.88i)12-s + 2i·13-s + (4.31 + 1.62i)14-s + 3.25i·15-s + (0.500 + 3.96i)16-s − 4.62i·17-s + ⋯ |
L(s) = 1 | + (−0.935 − 0.353i)2-s − 1.88i·3-s + (0.750 + 0.661i)4-s − 0.447·5-s + (−0.665 + 1.76i)6-s − 1.23·7-s + (−0.467 − 0.883i)8-s − 2.54·9-s + (0.418 + 0.158i)10-s + (0.982 − 0.185i)11-s + (1.24 − 1.41i)12-s + 0.554i·13-s + (1.15 + 0.435i)14-s + 0.841i·15-s + (0.125 + 0.992i)16-s − 1.12i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.859 - 0.511i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.859 - 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.106636 + 0.387833i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.106636 + 0.387833i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.32 + 0.5i)T \) |
| 5 | \( 1 + T \) |
| 11 | \( 1 + (-3.25 + 0.613i)T \) |
good | 3 | \( 1 + 3.25iT - 3T^{2} \) |
| 7 | \( 1 + 3.25T + 7T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 17 | \( 1 + 4.62iT - 17T^{2} \) |
| 19 | \( 1 + 4.48T + 19T^{2} \) |
| 23 | \( 1 - 1.22iT - 23T^{2} \) |
| 29 | \( 1 + 2.62iT - 29T^{2} \) |
| 31 | \( 1 + 3.25iT - 31T^{2} \) |
| 37 | \( 1 + 4.62T + 37T^{2} \) |
| 41 | \( 1 + 8iT - 41T^{2} \) |
| 43 | \( 1 - 1.22T + 43T^{2} \) |
| 47 | \( 1 - 1.22iT - 47T^{2} \) |
| 53 | \( 1 - 0.623T + 53T^{2} \) |
| 59 | \( 1 + 11.8iT - 59T^{2} \) |
| 61 | \( 1 + 1.37iT - 61T^{2} \) |
| 67 | \( 1 + 7.74iT - 67T^{2} \) |
| 71 | \( 1 + 9.77iT - 71T^{2} \) |
| 73 | \( 1 + 2iT - 73T^{2} \) |
| 79 | \( 1 - 13.0T + 79T^{2} \) |
| 83 | \( 1 + 7.74T + 83T^{2} \) |
| 89 | \( 1 + 8.62T + 89T^{2} \) |
| 97 | \( 1 - 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.89415353977896780908899112575, −11.04714208181117930799686387740, −9.462324678097205844554466460950, −8.717990445969213562244980623087, −7.61355778544448059297534701619, −6.78532184450892879307294524159, −6.26133455960287099417198064282, −3.44574749391459005168799810958, −2.11771274823639781110416119215, −0.43139058921706822383338988331,
3.13452885624797282855874462960, 4.23848750455116035376804384910, 5.73812589338021216771892245360, 6.69049441130634115522561670886, 8.422039851264062879159087937795, 9.009589749303747914626212135006, 10.00001300379123201288986180459, 10.46418871091837657108211842976, 11.40848017235116665776792906963, 12.58144531700598802008619767178