L(s) = 1 | + 12·5-s + 10·9-s + 16-s + 78·25-s + 4·37-s + 120·45-s − 46·49-s − 4·53-s + 4·64-s + 12·80-s + 33·81-s + 36·89-s − 8·97-s + 24·113-s − 10·121-s + 364·125-s + 127-s + 131-s + 137-s + 139-s + 10·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 72·169-s + ⋯ |
L(s) = 1 | + 5.36·5-s + 10/3·9-s + 1/4·16-s + 78/5·25-s + 0.657·37-s + 17.8·45-s − 6.57·49-s − 0.549·53-s + 1/2·64-s + 1.34·80-s + 11/3·81-s + 3.81·89-s − 0.812·97-s + 2.25·113-s − 0.909·121-s + 32.5·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5/6·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 5.53·169-s + ⋯ |
Λ(s)=(=((224⋅512⋅1112)s/2ΓC(s)12L(s)Λ(2−s)
Λ(s)=(=((224⋅512⋅1112)s/2ΓC(s+1/2)12L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
17.52464371 |
L(21) |
≈ |
17.52464371 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T4−p2T6−p2T8+p6T12 |
| 5 | (1−T)12 |
| 11 | 1+10T2+71T4+1548T6+71p2T8+10p4T10+p6T12 |
good | 3 | (1−5T2+7pT4−82T6+7p3T8−5p4T10+p6T12)2 |
| 7 | (1+23T2+271T4+2162T6+271p2T8+23p4T10+p6T12)2 |
| 13 | (1−36T2+887T4−13240T6+887p2T8−36p4T10+p6T12)2 |
| 17 | (1−63T2+1769T4−33526T6+1769p2T8−63p4T10+p6T12)2 |
| 19 | (1+5pT2+4039T4+98546T6+4039p2T8+5p5T10+p6T12)2 |
| 23 | (1−108T2+5423T4−159016T6+5423p2T8−108p4T10+p6T12)2 |
| 29 | (1−77T2+3035T4−89022T6+3035p2T8−77p4T10+p6T12)2 |
| 31 | (1−135T2+8735T4−341554T6+8735p2T8−135p4T10+p6T12)2 |
| 37 | (1−T+31T2−286T3+31pT4−p2T5+p3T6)4 |
| 41 | (1−70T2+3007T4−116308T6+3007p2T8−70p4T10+p6T12)2 |
| 43 | (1+118T2+6727T4+284788T6+6727p2T8+118p4T10+p6T12)2 |
| 47 | (1−12T2+2463T4−12904T6+2463p2T8−12p4T10+p6T12)2 |
| 53 | (1+T+107T2+230T3+107pT4+p2T5+p3T6)4 |
| 59 | (1−270T2+32807T4−2401732T6+32807p2T8−270p4T10+p6T12)2 |
| 61 | (1−301T2+41283T4−3242254T6+41283p2T8−301p4T10+p6T12)2 |
| 67 | (1−104T2+9935T4−659616T6+9935p2T8−104p4T10+p6T12)2 |
| 71 | (1−239T2+30959T4−2696130T6+30959p2T8−239p4T10+p6T12)2 |
| 73 | (1+100T2+13455T4+959608T6+13455p2T8+100p4T10+p6T12)2 |
| 79 | (1−146T2+20831T4−1830108T6+20831p2T8−146p4T10+p6T12)2 |
| 83 | (1+234T2+29975T4+2694668T6+29975p2T8+234p4T10+p6T12)2 |
| 89 | (1−9T+165T2−938T3+165pT4−9p2T5+p3T6)4 |
| 97 | (1+2T−33T2−4T3−33pT4+2p2T5+p3T6)4 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.27632374393016544779193315144, −4.11011158411645853064363928512, −4.06603420002457643688347955046, −4.05757895536378426861978937982, −3.87048125769078804390204009766, −3.75754033695638333511766303319, −3.63202919247051812961959745631, −3.26514572116430547240248648191, −3.25144682741088494546602358675, −3.12752877759680587859872222956, −2.99201337623790660238674931330, −2.94324033466690018803420983697, −2.88393691080233970314463087343, −2.46491672664236253472528501560, −2.33192419550725962867296083877, −2.30761548835383446729383481953, −2.28232913634462863517935612389, −1.90912497607685358913359579227, −1.74571274180383667961085625767, −1.71844605583125438996747489063, −1.69148623158413078306913117523, −1.34539865300933431253980709046, −1.30298746480378800197004827864, −1.25823738211269500436308085280, −0.808740271005341622398044069913,
0.808740271005341622398044069913, 1.25823738211269500436308085280, 1.30298746480378800197004827864, 1.34539865300933431253980709046, 1.69148623158413078306913117523, 1.71844605583125438996747489063, 1.74571274180383667961085625767, 1.90912497607685358913359579227, 2.28232913634462863517935612389, 2.30761548835383446729383481953, 2.33192419550725962867296083877, 2.46491672664236253472528501560, 2.88393691080233970314463087343, 2.94324033466690018803420983697, 2.99201337623790660238674931330, 3.12752877759680587859872222956, 3.25144682741088494546602358675, 3.26514572116430547240248648191, 3.63202919247051812961959745631, 3.75754033695638333511766303319, 3.87048125769078804390204009766, 4.05757895536378426861978937982, 4.06603420002457643688347955046, 4.11011158411645853064363928512, 4.27632374393016544779193315144
Plot not available for L-functions of degree greater than 10.