L(s) = 1 | + (0.419 + 1.35i)2-s + 2.05·3-s + (−1.64 + 1.13i)4-s + (1.54 − 1.61i)5-s + (0.860 + 2.77i)6-s + 1.06i·7-s + (−2.22 − 1.75i)8-s + 1.21·9-s + (2.83 + 1.40i)10-s + (3.17 + 0.957i)11-s + (−3.38 + 2.32i)12-s − 4.77·13-s + (−1.43 + 0.445i)14-s + (3.16 − 3.32i)15-s + (1.43 − 3.73i)16-s + 0.329·17-s + ⋯ |
L(s) = 1 | + (0.296 + 0.955i)2-s + 1.18·3-s + (−0.824 + 0.566i)4-s + (0.689 − 0.724i)5-s + (0.351 + 1.13i)6-s + 0.401i·7-s + (−0.785 − 0.619i)8-s + 0.404·9-s + (0.896 + 0.443i)10-s + (0.957 + 0.288i)11-s + (−0.976 + 0.670i)12-s − 1.32·13-s + (−0.383 + 0.119i)14-s + (0.817 − 0.858i)15-s + (0.358 − 0.933i)16-s + 0.0799·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.436 - 0.899i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.436 - 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.61083 + 1.00882i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.61083 + 1.00882i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.419 - 1.35i)T \) |
| 5 | \( 1 + (-1.54 + 1.61i)T \) |
| 11 | \( 1 + (-3.17 - 0.957i)T \) |
good | 3 | \( 1 - 2.05T + 3T^{2} \) |
| 7 | \( 1 - 1.06iT - 7T^{2} \) |
| 13 | \( 1 + 4.77T + 13T^{2} \) |
| 17 | \( 1 - 0.329T + 17T^{2} \) |
| 19 | \( 1 + 0.677T + 19T^{2} \) |
| 23 | \( 1 + 4.71T + 23T^{2} \) |
| 29 | \( 1 + 7.19iT - 29T^{2} \) |
| 31 | \( 1 - 9.04iT - 31T^{2} \) |
| 37 | \( 1 + 5.33iT - 37T^{2} \) |
| 41 | \( 1 - 5.01iT - 41T^{2} \) |
| 43 | \( 1 + 5.08iT - 43T^{2} \) |
| 47 | \( 1 - 1.61T + 47T^{2} \) |
| 53 | \( 1 - 8.57iT - 53T^{2} \) |
| 59 | \( 1 + 0.336iT - 59T^{2} \) |
| 61 | \( 1 + 13.2iT - 61T^{2} \) |
| 67 | \( 1 - 4.71T + 67T^{2} \) |
| 71 | \( 1 + 3.97iT - 71T^{2} \) |
| 73 | \( 1 - 11.6T + 73T^{2} \) |
| 79 | \( 1 + 6.35T + 79T^{2} \) |
| 83 | \( 1 - 12.0iT - 83T^{2} \) |
| 89 | \( 1 + 7.95T + 89T^{2} \) |
| 97 | \( 1 + 3.23iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.60556186694575614606363142233, −12.07144947415463049357999350254, −9.857126535748668803930809362278, −9.273019478327502925838701349160, −8.512653955595243262341014981165, −7.58380625328105966610486994457, −6.32721262493830750041292175418, −5.15526062085783509312008189400, −3.97476532787784431356844495100, −2.35474635857878699814471023314,
2.00256857398720644735119045098, 3.03814282720150971055099651533, 4.13643087633955919614240619822, 5.74370037527311643300209060761, 7.12750384736812723936130074949, 8.447982809422279294836955647977, 9.511416048406765607561663978870, 9.979365810440346592719634932265, 11.12892343233075515735327989610, 12.12318173816898183332504722816