L(s) = 1 | + (0.513 + 1.31i)2-s + (0.912 + 0.912i)3-s + (−1.47 + 1.35i)4-s + (1.46 + 1.68i)5-s + (−0.733 + 1.67i)6-s + (0.0653 − 0.0653i)7-s + (−2.54 − 1.24i)8-s − 1.33i·9-s + (−1.47 + 2.79i)10-s − i·11-s + (−2.57 − 0.107i)12-s + (0.473 − 0.473i)13-s + (0.119 + 0.0524i)14-s + (−0.204 + 2.87i)15-s + (0.332 − 3.98i)16-s + (−1.01 − 1.01i)17-s + ⋯ |
L(s) = 1 | + (0.363 + 0.931i)2-s + (0.526 + 0.526i)3-s + (−0.735 + 0.677i)4-s + (0.655 + 0.755i)5-s + (−0.299 + 0.682i)6-s + (0.0246 − 0.0246i)7-s + (−0.898 − 0.439i)8-s − 0.444i·9-s + (−0.465 + 0.884i)10-s − 0.301i·11-s + (−0.744 − 0.0309i)12-s + (0.131 − 0.131i)13-s + (0.0319 + 0.0140i)14-s + (−0.0528 + 0.743i)15-s + (0.0830 − 0.996i)16-s + (−0.245 − 0.245i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.426 - 0.904i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.426 - 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.895376 + 1.41263i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.895376 + 1.41263i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.513 - 1.31i)T \) |
| 5 | \( 1 + (-1.46 - 1.68i)T \) |
| 11 | \( 1 + iT \) |
good | 3 | \( 1 + (-0.912 - 0.912i)T + 3iT^{2} \) |
| 7 | \( 1 + (-0.0653 + 0.0653i)T - 7iT^{2} \) |
| 13 | \( 1 + (-0.473 + 0.473i)T - 13iT^{2} \) |
| 17 | \( 1 + (1.01 + 1.01i)T + 17iT^{2} \) |
| 19 | \( 1 + 2.65T + 19T^{2} \) |
| 23 | \( 1 + (-5.32 - 5.32i)T + 23iT^{2} \) |
| 29 | \( 1 + 5.94iT - 29T^{2} \) |
| 31 | \( 1 - 1.44iT - 31T^{2} \) |
| 37 | \( 1 + (5.27 + 5.27i)T + 37iT^{2} \) |
| 41 | \( 1 + 5.13T + 41T^{2} \) |
| 43 | \( 1 + (-4.06 - 4.06i)T + 43iT^{2} \) |
| 47 | \( 1 + (-7.89 + 7.89i)T - 47iT^{2} \) |
| 53 | \( 1 + (-2.60 + 2.60i)T - 53iT^{2} \) |
| 59 | \( 1 + 7.70T + 59T^{2} \) |
| 61 | \( 1 - 7.06T + 61T^{2} \) |
| 67 | \( 1 + (5.47 - 5.47i)T - 67iT^{2} \) |
| 71 | \( 1 + 1.80iT - 71T^{2} \) |
| 73 | \( 1 + (-5.16 + 5.16i)T - 73iT^{2} \) |
| 79 | \( 1 + 14.2T + 79T^{2} \) |
| 83 | \( 1 + (11.9 + 11.9i)T + 83iT^{2} \) |
| 89 | \( 1 - 5.69iT - 89T^{2} \) |
| 97 | \( 1 + (0.398 + 0.398i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.99528956806793907387481975741, −11.69929868977727833621008653415, −10.44655519028256394176266677415, −9.404779455738360843705232214970, −8.744727081624676930662085895388, −7.41660595154725703310755750736, −6.45818953842696301791973665863, −5.45689987737496628876318504006, −3.99094817594212426516128630014, −2.92349695545325318497426535473,
1.53826453368582009010875250432, 2.67895101940542786071787719776, 4.42753997541525481587961987651, 5.39877916381151534519686432897, 6.79809656778005612848940669327, 8.458546605466202034299575213670, 8.947556090944977247574785811283, 10.18802176646334227854863240184, 10.96850244070389272999125904505, 12.36971277368615690434681009611