L(s) = 1 | + (−0.679 + 1.88i)2-s + 5.18i·3-s + (−3.07 − 2.55i)4-s + 2.23·5-s + (−9.75 − 3.52i)6-s + 11.9i·7-s + (6.89 − 4.05i)8-s − 17.8·9-s + (−1.51 + 4.20i)10-s − 3.31i·11-s + (13.2 − 15.9i)12-s − 14.0·13-s + (−22.5 − 8.13i)14-s + 11.5i·15-s + (2.94 + 15.7i)16-s + 20.7·17-s + ⋯ |
L(s) = 1 | + (−0.339 + 0.940i)2-s + 1.72i·3-s + (−0.769 − 0.638i)4-s + 0.447·5-s + (−1.62 − 0.587i)6-s + 1.71i·7-s + (0.862 − 0.506i)8-s − 1.98·9-s + (−0.151 + 0.420i)10-s − 0.301i·11-s + (1.10 − 1.32i)12-s − 1.08·13-s + (−1.60 − 0.581i)14-s + 0.773i·15-s + (0.183 + 0.982i)16-s + 1.22·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.638 + 0.769i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.638 + 0.769i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.442972 - 0.943621i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.442972 - 0.943621i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.679 - 1.88i)T \) |
| 5 | \( 1 - 2.23T \) |
| 11 | \( 1 + 3.31iT \) |
good | 3 | \( 1 - 5.18iT - 9T^{2} \) |
| 7 | \( 1 - 11.9iT - 49T^{2} \) |
| 13 | \( 1 + 14.0T + 169T^{2} \) |
| 17 | \( 1 - 20.7T + 289T^{2} \) |
| 19 | \( 1 - 0.389iT - 361T^{2} \) |
| 23 | \( 1 + 7.30iT - 529T^{2} \) |
| 29 | \( 1 - 39.6T + 841T^{2} \) |
| 31 | \( 1 + 24.7iT - 961T^{2} \) |
| 37 | \( 1 - 28.5T + 1.36e3T^{2} \) |
| 41 | \( 1 + 41.8T + 1.68e3T^{2} \) |
| 43 | \( 1 + 2.07iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 87.2iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 103.T + 2.80e3T^{2} \) |
| 59 | \( 1 - 44.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 61.7T + 3.72e3T^{2} \) |
| 67 | \( 1 - 36.1iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 98.8iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 10.3T + 5.32e3T^{2} \) |
| 79 | \( 1 + 59.9iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 23.4iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 55.8T + 7.92e3T^{2} \) |
| 97 | \( 1 - 86.7T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.64093458875625216282069529380, −11.51836812371565218990386272068, −10.18907421660070387117111027680, −9.662306464215124713559059575501, −8.937104592009706986209676693936, −8.044659853525609717542017005903, −6.15173150188596364990073198861, −5.40984931305619557418815040539, −4.62967854185190857137880263100, −2.87078879205141979280058548253,
0.66518569454909269345638266438, 1.75134699295395282826293209549, 3.21219150045635339160283738689, 4.94257319933837260730487973717, 6.72302998230954886110955283338, 7.48619615056692915309294567427, 8.202467614637206747693751705057, 9.756149210580271326778245454639, 10.45497571429484728704599616090, 11.67128569091152390441299044241