L(s) = 1 | + (−0.679 + 1.88i)2-s + 5.18i·3-s + (−3.07 − 2.55i)4-s + 2.23·5-s + (−9.75 − 3.52i)6-s + 11.9i·7-s + (6.89 − 4.05i)8-s − 17.8·9-s + (−1.51 + 4.20i)10-s − 3.31i·11-s + (13.2 − 15.9i)12-s − 14.0·13-s + (−22.5 − 8.13i)14-s + 11.5i·15-s + (2.94 + 15.7i)16-s + 20.7·17-s + ⋯ |
L(s) = 1 | + (−0.339 + 0.940i)2-s + 1.72i·3-s + (−0.769 − 0.638i)4-s + 0.447·5-s + (−1.62 − 0.587i)6-s + 1.71i·7-s + (0.862 − 0.506i)8-s − 1.98·9-s + (−0.151 + 0.420i)10-s − 0.301i·11-s + (1.10 − 1.32i)12-s − 1.08·13-s + (−1.60 − 0.581i)14-s + 0.773i·15-s + (0.183 + 0.982i)16-s + 1.22·17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(−0.638+0.769i)Λ(3−s)
Λ(s)=(=(220s/2ΓC(s+1)L(s)(−0.638+0.769i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
−0.638+0.769i
|
Analytic conductor: |
5.99456 |
Root analytic conductor: |
2.44838 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(111,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1), −0.638+0.769i)
|
Particular Values
L(23) |
≈ |
0.442972−0.943621i |
L(21) |
≈ |
0.442972−0.943621i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.679−1.88i)T |
| 5 | 1−2.23T |
| 11 | 1+3.31iT |
good | 3 | 1−5.18iT−9T2 |
| 7 | 1−11.9iT−49T2 |
| 13 | 1+14.0T+169T2 |
| 17 | 1−20.7T+289T2 |
| 19 | 1−0.389iT−361T2 |
| 23 | 1+7.30iT−529T2 |
| 29 | 1−39.6T+841T2 |
| 31 | 1+24.7iT−961T2 |
| 37 | 1−28.5T+1.36e3T2 |
| 41 | 1+41.8T+1.68e3T2 |
| 43 | 1+2.07iT−1.84e3T2 |
| 47 | 1−87.2iT−2.20e3T2 |
| 53 | 1+103.T+2.80e3T2 |
| 59 | 1−44.6iT−3.48e3T2 |
| 61 | 1−61.7T+3.72e3T2 |
| 67 | 1−36.1iT−4.48e3T2 |
| 71 | 1−98.8iT−5.04e3T2 |
| 73 | 1+10.3T+5.32e3T2 |
| 79 | 1+59.9iT−6.24e3T2 |
| 83 | 1−23.4iT−6.88e3T2 |
| 89 | 1+55.8T+7.92e3T2 |
| 97 | 1−86.7T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.64093458875625216282069529380, −11.51836812371565218990386272068, −10.18907421660070387117111027680, −9.662306464215124713559059575501, −8.937104592009706986209676693936, −8.044659853525609717542017005903, −6.15173150188596364990073198861, −5.40984931305619557418815040539, −4.62967854185190857137880263100, −2.87078879205141979280058548253,
0.66518569454909269345638266438, 1.75134699295395282826293209549, 3.21219150045635339160283738689, 4.94257319933837260730487973717, 6.72302998230954886110955283338, 7.48619615056692915309294567427, 8.202467614637206747693751705057, 9.756149210580271326778245454639, 10.45497571429484728704599616090, 11.67128569091152390441299044241