L(s) = 1 | + i·2-s − 4-s − i·8-s − 9-s + 11-s + i·13-s + 16-s − i·18-s + 19-s + i·22-s + i·23-s − 26-s + 29-s − 31-s + i·32-s + ⋯ |
L(s) = 1 | + i·2-s − 4-s − i·8-s − 9-s + 11-s + i·13-s + 16-s − i·18-s + 19-s + i·22-s + i·23-s − 26-s + 29-s − 31-s + i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9796492416\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9796492416\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 11 | \( 1 - T \) |
good | 3 | \( 1 + T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 13 | \( 1 - iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 - iT - T^{2} \) |
| 29 | \( 1 - T + T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - iT - T^{2} \) |
| 47 | \( 1 - 2iT - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 2T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - iT - T^{2} \) |
| 89 | \( 1 - T + T^{2} \) |
| 97 | \( 1 + iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.375157805048728225412187538502, −8.685151635261986299317157540435, −7.909816433825972293531197398140, −7.10076469009060036209696039536, −6.38712039336697908439515981670, −5.70624140002490848807108576857, −4.85170682612017392845895388080, −3.94802294027652468214179499007, −3.05592497014781361296961078783, −1.36692376656180686332452212402,
0.77763693745920854202371468855, 2.17215931587145035144247821769, 3.15875523463681318037468542989, 3.79414088092177222857564009973, 4.98344026437409000481784922707, 5.57977441372606449807894571392, 6.56203591839882827670796680196, 7.67238946592889608100514947126, 8.591178154592207498301928381800, 8.903790632129862844993641713222