L(s) = 1 | + 15·4-s + 86·11-s + 161·16-s + 70·19-s + 320·29-s + 84·31-s + 406·41-s + 1.29e3·44-s + 650·49-s − 560·59-s − 1.03e3·61-s + 1.45e3·64-s − 824·71-s + 1.05e3·76-s − 1.02e3·79-s − 1.89e3·89-s − 2.60e3·101-s − 2.14e3·109-s + 4.80e3·116-s + 2.88e3·121-s + 1.26e3·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯ |
L(s) = 1 | + 15/8·4-s + 2.35·11-s + 2.51·16-s + 0.845·19-s + 2.04·29-s + 0.486·31-s + 1.54·41-s + 4.41·44-s + 1.89·49-s − 1.23·59-s − 2.17·61-s + 2.84·64-s − 1.37·71-s + 1.58·76-s − 1.45·79-s − 2.25·89-s − 2.56·101-s − 1.88·109-s + 3.84·116-s + 2.16·121-s + 0.912·124-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + ⋯ |
Λ(s)=(=(50625s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(50625s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
50625
= 34⋅54
|
Sign: |
1
|
Analytic conductor: |
176.237 |
Root analytic conductor: |
3.64354 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 50625, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
5.671273321 |
L(21) |
≈ |
5.671273321 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | | 1 |
good | 2 | C22 | 1−15T2+p6T4 |
| 7 | C22 | 1−650T2+p6T4 |
| 11 | C2 | (1−43T+p3T2)2 |
| 13 | C22 | 1−3610T2+p6T4 |
| 17 | C22 | 1−1545T2+p6T4 |
| 19 | C2 | (1−35T+p3T2)2 |
| 23 | C22 | 1+1910T2+p6T4 |
| 29 | C2 | (1−160T+p3T2)2 |
| 31 | C2 | (1−42T+p3T2)2 |
| 37 | C22 | 1−2710T2+p6T4 |
| 41 | C2 | (1−203T+p3T2)2 |
| 43 | C22 | 1−150550T2+p6T4 |
| 47 | C22 | 1−169230T2+p6T4 |
| 53 | C22 | 1−291030T2+p6T4 |
| 59 | C2 | (1+280T+p3T2)2 |
| 61 | C2 | (1+518T+p3T2)2 |
| 67 | C22 | 1−581645T2+p6T4 |
| 71 | C2 | (1+412T+p3T2)2 |
| 73 | C22 | 1−195865T2+p6T4 |
| 79 | C2 | (1+510T+p3T2)2 |
| 83 | C22 | 1−539845T2+p6T4 |
| 89 | C2 | (1+945T+p3T2)2 |
| 97 | C22 | 1−272830T2+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.91024676504293148752800662682, −11.78095794529568528931988329931, −11.01358803702866093824695124426, −10.84989625072399154783647284807, −10.13650849674616674161009520178, −9.737666004305842109144221759153, −9.045275310979518361918703915143, −8.703886115521945247123125525885, −7.81631347999061760717321019399, −7.49758683097558234352435081383, −6.73218584991688115356403756762, −6.64904153775204110324849651449, −6.01895959926985832442616390006, −5.57983661243711358920732504523, −4.42126816620113659008484445807, −3.97636953211741518269571920036, −2.96998460118144349797316446203, −2.67550728019049928456824006338, −1.33272796765119163125405994647, −1.26783699447599961263571658716,
1.26783699447599961263571658716, 1.33272796765119163125405994647, 2.67550728019049928456824006338, 2.96998460118144349797316446203, 3.97636953211741518269571920036, 4.42126816620113659008484445807, 5.57983661243711358920732504523, 6.01895959926985832442616390006, 6.64904153775204110324849651449, 6.73218584991688115356403756762, 7.49758683097558234352435081383, 7.81631347999061760717321019399, 8.703886115521945247123125525885, 9.045275310979518361918703915143, 9.737666004305842109144221759153, 10.13650849674616674161009520178, 10.84989625072399154783647284807, 11.01358803702866093824695124426, 11.78095794529568528931988329931, 11.91024676504293148752800662682