Properties

Label 4-15e4-1.1-c3e2-0-10
Degree $4$
Conductor $50625$
Sign $1$
Analytic cond. $176.237$
Root an. cond. $3.64354$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 15·4-s + 86·11-s + 161·16-s + 70·19-s + 320·29-s + 84·31-s + 406·41-s + 1.29e3·44-s + 650·49-s − 560·59-s − 1.03e3·61-s + 1.45e3·64-s − 824·71-s + 1.05e3·76-s − 1.02e3·79-s − 1.89e3·89-s − 2.60e3·101-s − 2.14e3·109-s + 4.80e3·116-s + 2.88e3·121-s + 1.26e3·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  + 15/8·4-s + 2.35·11-s + 2.51·16-s + 0.845·19-s + 2.04·29-s + 0.486·31-s + 1.54·41-s + 4.41·44-s + 1.89·49-s − 1.23·59-s − 2.17·61-s + 2.84·64-s − 1.37·71-s + 1.58·76-s − 1.45·79-s − 2.25·89-s − 2.56·101-s − 1.88·109-s + 3.84·116-s + 2.16·121-s + 0.912·124-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50625 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(50625\)    =    \(3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(176.237\)
Root analytic conductor: \(3.64354\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 50625,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.671273321\)
\(L(\frac12)\) \(\approx\) \(5.671273321\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$C_2^2$ \( 1 - 15 T^{2} + p^{6} T^{4} \)
7$C_2^2$ \( 1 - 650 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 - 43 T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 3610 T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 - 1545 T^{2} + p^{6} T^{4} \)
19$C_2$ \( ( 1 - 35 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 1910 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 160 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 42 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 2710 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 - 203 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 150550 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 169230 T^{2} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 291030 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 + 280 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 + 518 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 581645 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 412 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 195865 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 + 510 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 539845 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 945 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 272830 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.91024676504293148752800662682, −11.78095794529568528931988329931, −11.01358803702866093824695124426, −10.84989625072399154783647284807, −10.13650849674616674161009520178, −9.737666004305842109144221759153, −9.045275310979518361918703915143, −8.703886115521945247123125525885, −7.81631347999061760717321019399, −7.49758683097558234352435081383, −6.73218584991688115356403756762, −6.64904153775204110324849651449, −6.01895959926985832442616390006, −5.57983661243711358920732504523, −4.42126816620113659008484445807, −3.97636953211741518269571920036, −2.96998460118144349797316446203, −2.67550728019049928456824006338, −1.33272796765119163125405994647, −1.26783699447599961263571658716, 1.26783699447599961263571658716, 1.33272796765119163125405994647, 2.67550728019049928456824006338, 2.96998460118144349797316446203, 3.97636953211741518269571920036, 4.42126816620113659008484445807, 5.57983661243711358920732504523, 6.01895959926985832442616390006, 6.64904153775204110324849651449, 6.73218584991688115356403756762, 7.49758683097558234352435081383, 7.81631347999061760717321019399, 8.703886115521945247123125525885, 9.045275310979518361918703915143, 9.737666004305842109144221759153, 10.13650849674616674161009520178, 10.84989625072399154783647284807, 11.01358803702866093824695124426, 11.78095794529568528931988329931, 11.91024676504293148752800662682

Graph of the $Z$-function along the critical line