Properties

Label 2-2268-63.41-c1-0-10
Degree 22
Conductor 22682268
Sign 0.6300.775i0.630 - 0.775i
Analytic cond. 18.110018.1100
Root an. cond. 4.255594.25559
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 2.59i)7-s + (1.5 + 0.866i)13-s − 8.66i·19-s + (2.5 + 4.33i)25-s + (9 + 5.19i)31-s + 37-s + (4 + 6.92i)43-s + (−6.5 + 2.59i)49-s + (−7.5 + 4.33i)61-s + (−5.5 + 9.52i)67-s + 1.73i·73-s + (6.5 + 11.2i)79-s + (−1.5 + 4.33i)91-s + (16.5 − 9.52i)97-s + (16.5 + 9.52i)103-s + ⋯
L(s)  = 1  + (0.188 + 0.981i)7-s + (0.416 + 0.240i)13-s − 1.98i·19-s + (0.5 + 0.866i)25-s + (1.61 + 0.933i)31-s + 0.164·37-s + (0.609 + 1.05i)43-s + (−0.928 + 0.371i)49-s + (−0.960 + 0.554i)61-s + (−0.671 + 1.16i)67-s + 0.202i·73-s + (0.731 + 1.26i)79-s + (−0.157 + 0.453i)91-s + (1.67 − 0.967i)97-s + (1.62 + 0.938i)103-s + ⋯

Functional equation

Λ(s)=(2268s/2ΓC(s)L(s)=((0.6300.775i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.630 - 0.775i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(2268s/2ΓC(s+1/2)L(s)=((0.6300.775i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.630 - 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 22682268    =    223472^{2} \cdot 3^{4} \cdot 7
Sign: 0.6300.775i0.630 - 0.775i
Analytic conductor: 18.110018.1100
Root analytic conductor: 4.255594.25559
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ2268(377,)\chi_{2268} (377, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 2268, ( :1/2), 0.6300.775i)(2,\ 2268,\ (\ :1/2),\ 0.630 - 0.775i)

Particular Values

L(1)L(1) \approx 1.8009302281.800930228
L(12)L(\frac12) \approx 1.8009302281.800930228
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
7 1+(0.52.59i)T 1 + (-0.5 - 2.59i)T
good5 1+(2.54.33i)T2 1 + (-2.5 - 4.33i)T^{2}
11 1+(5.59.52i)T2 1 + (5.5 - 9.52i)T^{2}
13 1+(1.50.866i)T+(6.5+11.2i)T2 1 + (-1.5 - 0.866i)T + (6.5 + 11.2i)T^{2}
17 1+17T2 1 + 17T^{2}
19 1+8.66iT19T2 1 + 8.66iT - 19T^{2}
23 1+(11.5+19.9i)T2 1 + (11.5 + 19.9i)T^{2}
29 1+(14.525.1i)T2 1 + (14.5 - 25.1i)T^{2}
31 1+(95.19i)T+(15.5+26.8i)T2 1 + (-9 - 5.19i)T + (15.5 + 26.8i)T^{2}
37 1T+37T2 1 - T + 37T^{2}
41 1+(20.535.5i)T2 1 + (-20.5 - 35.5i)T^{2}
43 1+(46.92i)T+(21.5+37.2i)T2 1 + (-4 - 6.92i)T + (-21.5 + 37.2i)T^{2}
47 1+(23.5+40.7i)T2 1 + (-23.5 + 40.7i)T^{2}
53 153T2 1 - 53T^{2}
59 1+(29.551.0i)T2 1 + (-29.5 - 51.0i)T^{2}
61 1+(7.54.33i)T+(30.552.8i)T2 1 + (7.5 - 4.33i)T + (30.5 - 52.8i)T^{2}
67 1+(5.59.52i)T+(33.558.0i)T2 1 + (5.5 - 9.52i)T + (-33.5 - 58.0i)T^{2}
71 171T2 1 - 71T^{2}
73 11.73iT73T2 1 - 1.73iT - 73T^{2}
79 1+(6.511.2i)T+(39.5+68.4i)T2 1 + (-6.5 - 11.2i)T + (-39.5 + 68.4i)T^{2}
83 1+(41.5+71.8i)T2 1 + (-41.5 + 71.8i)T^{2}
89 1+89T2 1 + 89T^{2}
97 1+(16.5+9.52i)T+(48.584.0i)T2 1 + (-16.5 + 9.52i)T + (48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.957845594041777441685976503606, −8.614880188907827938813873798234, −7.58884737148203376123949510851, −6.74191425909987842746220278727, −6.05344493236716187471932821006, −5.07074140562705290133021837929, −4.50837833703573721072753568677, −3.14281811639296592433677437549, −2.46893187669859520433949196678, −1.13158635465035578929384526109, 0.73437428858594037551216184151, 1.90042347101419496517922453147, 3.23142853138586706696554153105, 4.04414834191013381453118875332, 4.77873509028592972501557530030, 5.95103662025693935911652799337, 6.45475002832406033965570038753, 7.60180260246159955692598488342, 7.977926946483047116697374987659, 8.816461954399482816526542109352

Graph of the ZZ-function along the critical line