L(s) = 1 | + (0.5 + 2.59i)7-s + (1.5 + 0.866i)13-s − 8.66i·19-s + (2.5 + 4.33i)25-s + (9 + 5.19i)31-s + 37-s + (4 + 6.92i)43-s + (−6.5 + 2.59i)49-s + (−7.5 + 4.33i)61-s + (−5.5 + 9.52i)67-s + 1.73i·73-s + (6.5 + 11.2i)79-s + (−1.5 + 4.33i)91-s + (16.5 − 9.52i)97-s + (16.5 + 9.52i)103-s + ⋯ |
L(s) = 1 | + (0.188 + 0.981i)7-s + (0.416 + 0.240i)13-s − 1.98i·19-s + (0.5 + 0.866i)25-s + (1.61 + 0.933i)31-s + 0.164·37-s + (0.609 + 1.05i)43-s + (−0.928 + 0.371i)49-s + (−0.960 + 0.554i)61-s + (−0.671 + 1.16i)67-s + 0.202i·73-s + (0.731 + 1.26i)79-s + (−0.157 + 0.453i)91-s + (1.67 − 0.967i)97-s + (1.62 + 0.938i)103-s + ⋯ |
Λ(s)=(=(2268s/2ΓC(s)L(s)(0.630−0.775i)Λ(2−s)
Λ(s)=(=(2268s/2ΓC(s+1/2)L(s)(0.630−0.775i)Λ(1−s)
Degree: |
2 |
Conductor: |
2268
= 22⋅34⋅7
|
Sign: |
0.630−0.775i
|
Analytic conductor: |
18.1100 |
Root analytic conductor: |
4.25559 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2268(377,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2268, ( :1/2), 0.630−0.775i)
|
Particular Values
L(1) |
≈ |
1.800930228 |
L(21) |
≈ |
1.800930228 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−0.5−2.59i)T |
good | 5 | 1+(−2.5−4.33i)T2 |
| 11 | 1+(5.5−9.52i)T2 |
| 13 | 1+(−1.5−0.866i)T+(6.5+11.2i)T2 |
| 17 | 1+17T2 |
| 19 | 1+8.66iT−19T2 |
| 23 | 1+(11.5+19.9i)T2 |
| 29 | 1+(14.5−25.1i)T2 |
| 31 | 1+(−9−5.19i)T+(15.5+26.8i)T2 |
| 37 | 1−T+37T2 |
| 41 | 1+(−20.5−35.5i)T2 |
| 43 | 1+(−4−6.92i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−23.5+40.7i)T2 |
| 53 | 1−53T2 |
| 59 | 1+(−29.5−51.0i)T2 |
| 61 | 1+(7.5−4.33i)T+(30.5−52.8i)T2 |
| 67 | 1+(5.5−9.52i)T+(−33.5−58.0i)T2 |
| 71 | 1−71T2 |
| 73 | 1−1.73iT−73T2 |
| 79 | 1+(−6.5−11.2i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−41.5+71.8i)T2 |
| 89 | 1+89T2 |
| 97 | 1+(−16.5+9.52i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.957845594041777441685976503606, −8.614880188907827938813873798234, −7.58884737148203376123949510851, −6.74191425909987842746220278727, −6.05344493236716187471932821006, −5.07074140562705290133021837929, −4.50837833703573721072753568677, −3.14281811639296592433677437549, −2.46893187669859520433949196678, −1.13158635465035578929384526109,
0.73437428858594037551216184151, 1.90042347101419496517922453147, 3.23142853138586706696554153105, 4.04414834191013381453118875332, 4.77873509028592972501557530030, 5.95103662025693935911652799337, 6.45475002832406033965570038753, 7.60180260246159955692598488342, 7.977926946483047116697374987659, 8.816461954399482816526542109352