Properties

Label 2-48e2-16.13-c1-0-23
Degree $2$
Conductor $2304$
Sign $0.608 + 0.793i$
Analytic cond. $18.3975$
Root an. cond. $4.28923$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.73 + 1.73i)5-s + 1.03i·7-s + (−0.896 + 0.896i)11-s + (−3.73 − 3.73i)13-s + 3.46·17-s + (−0.896 − 0.896i)19-s − 6.69i·23-s − 0.999i·25-s + (−1.73 − 1.73i)29-s − 5.65·31-s + (−1.79 − 1.79i)35-s + (0.267 − 0.267i)37-s + 6.92i·41-s + (5.79 − 5.79i)43-s + 9.79·47-s + ⋯
L(s)  = 1  + (−0.774 + 0.774i)5-s + 0.391i·7-s + (−0.270 + 0.270i)11-s + (−1.03 − 1.03i)13-s + 0.840·17-s + (−0.205 − 0.205i)19-s − 1.39i·23-s − 0.199i·25-s + (−0.321 − 0.321i)29-s − 1.01·31-s + (−0.303 − 0.303i)35-s + (0.0440 − 0.0440i)37-s + 1.08i·41-s + (0.883 − 0.883i)43-s + 1.42·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.608 + 0.793i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.608 + 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2304\)    =    \(2^{8} \cdot 3^{2}\)
Sign: $0.608 + 0.793i$
Analytic conductor: \(18.3975\)
Root analytic conductor: \(4.28923\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2304} (577, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2304,\ (\ :1/2),\ 0.608 + 0.793i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9843900281\)
\(L(\frac12)\) \(\approx\) \(0.9843900281\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + (1.73 - 1.73i)T - 5iT^{2} \)
7 \( 1 - 1.03iT - 7T^{2} \)
11 \( 1 + (0.896 - 0.896i)T - 11iT^{2} \)
13 \( 1 + (3.73 + 3.73i)T + 13iT^{2} \)
17 \( 1 - 3.46T + 17T^{2} \)
19 \( 1 + (0.896 + 0.896i)T + 19iT^{2} \)
23 \( 1 + 6.69iT - 23T^{2} \)
29 \( 1 + (1.73 + 1.73i)T + 29iT^{2} \)
31 \( 1 + 5.65T + 31T^{2} \)
37 \( 1 + (-0.267 + 0.267i)T - 37iT^{2} \)
41 \( 1 - 6.92iT - 41T^{2} \)
43 \( 1 + (-5.79 + 5.79i)T - 43iT^{2} \)
47 \( 1 - 9.79T + 47T^{2} \)
53 \( 1 + (4.26 - 4.26i)T - 53iT^{2} \)
59 \( 1 + (-7.58 + 7.58i)T - 59iT^{2} \)
61 \( 1 + (-0.267 - 0.267i)T + 61iT^{2} \)
67 \( 1 + (2.96 + 2.96i)T + 67iT^{2} \)
71 \( 1 + 6.69iT - 71T^{2} \)
73 \( 1 + 9.46iT - 73T^{2} \)
79 \( 1 - 15.4T + 79T^{2} \)
83 \( 1 + (-5.79 - 5.79i)T + 83iT^{2} \)
89 \( 1 + 9.46iT - 89T^{2} \)
97 \( 1 + 3.46T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.875908573598203934818949230731, −7.80082735466254569904820894981, −7.58994201319581587610428722301, −6.68167336036526413382807227930, −5.70954881060980455810054002907, −4.95309130264778229491395215973, −3.92791037522398125906196650337, −3.00112614794161338312384515535, −2.28750219412718513691306503792, −0.40801682636467236999627077774, 0.987190011716098147139464432060, 2.26411567213665219838437667819, 3.62113777319441891378542538415, 4.19606049901685322550266598626, 5.13587109034494929559340434759, 5.80948197946146385808429945159, 7.17729845658082945059762731207, 7.44976026092865572433447316311, 8.323508098928869720733054686942, 9.132940520669187894319000565298

Graph of the $Z$-function along the critical line