L(s) = 1 | + (−1.73 + 1.73i)5-s + 1.03i·7-s + (−0.896 + 0.896i)11-s + (−3.73 − 3.73i)13-s + 3.46·17-s + (−0.896 − 0.896i)19-s − 6.69i·23-s − 0.999i·25-s + (−1.73 − 1.73i)29-s − 5.65·31-s + (−1.79 − 1.79i)35-s + (0.267 − 0.267i)37-s + 6.92i·41-s + (5.79 − 5.79i)43-s + 9.79·47-s + ⋯ |
L(s) = 1 | + (−0.774 + 0.774i)5-s + 0.391i·7-s + (−0.270 + 0.270i)11-s + (−1.03 − 1.03i)13-s + 0.840·17-s + (−0.205 − 0.205i)19-s − 1.39i·23-s − 0.199i·25-s + (−0.321 − 0.321i)29-s − 1.01·31-s + (−0.303 − 0.303i)35-s + (0.0440 − 0.0440i)37-s + 1.08i·41-s + (0.883 − 0.883i)43-s + 1.42·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.608 + 0.793i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.608 + 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9843900281\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9843900281\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (1.73 - 1.73i)T - 5iT^{2} \) |
| 7 | \( 1 - 1.03iT - 7T^{2} \) |
| 11 | \( 1 + (0.896 - 0.896i)T - 11iT^{2} \) |
| 13 | \( 1 + (3.73 + 3.73i)T + 13iT^{2} \) |
| 17 | \( 1 - 3.46T + 17T^{2} \) |
| 19 | \( 1 + (0.896 + 0.896i)T + 19iT^{2} \) |
| 23 | \( 1 + 6.69iT - 23T^{2} \) |
| 29 | \( 1 + (1.73 + 1.73i)T + 29iT^{2} \) |
| 31 | \( 1 + 5.65T + 31T^{2} \) |
| 37 | \( 1 + (-0.267 + 0.267i)T - 37iT^{2} \) |
| 41 | \( 1 - 6.92iT - 41T^{2} \) |
| 43 | \( 1 + (-5.79 + 5.79i)T - 43iT^{2} \) |
| 47 | \( 1 - 9.79T + 47T^{2} \) |
| 53 | \( 1 + (4.26 - 4.26i)T - 53iT^{2} \) |
| 59 | \( 1 + (-7.58 + 7.58i)T - 59iT^{2} \) |
| 61 | \( 1 + (-0.267 - 0.267i)T + 61iT^{2} \) |
| 67 | \( 1 + (2.96 + 2.96i)T + 67iT^{2} \) |
| 71 | \( 1 + 6.69iT - 71T^{2} \) |
| 73 | \( 1 + 9.46iT - 73T^{2} \) |
| 79 | \( 1 - 15.4T + 79T^{2} \) |
| 83 | \( 1 + (-5.79 - 5.79i)T + 83iT^{2} \) |
| 89 | \( 1 + 9.46iT - 89T^{2} \) |
| 97 | \( 1 + 3.46T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.875908573598203934818949230731, −7.80082735466254569904820894981, −7.58994201319581587610428722301, −6.68167336036526413382807227930, −5.70954881060980455810054002907, −4.95309130264778229491395215973, −3.92791037522398125906196650337, −3.00112614794161338312384515535, −2.28750219412718513691306503792, −0.40801682636467236999627077774,
0.987190011716098147139464432060, 2.26411567213665219838437667819, 3.62113777319441891378542538415, 4.19606049901685322550266598626, 5.13587109034494929559340434759, 5.80948197946146385808429945159, 7.17729845658082945059762731207, 7.44976026092865572433447316311, 8.323508098928869720733054686942, 9.132940520669187894319000565298