Properties

Label 2-2368-37.36-c1-0-3
Degree $2$
Conductor $2368$
Sign $-0.657 - 0.753i$
Analytic cond. $18.9085$
Root an. cond. $4.34839$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.79·3-s + 0.791i·5-s − 2·7-s + 0.208·9-s + 0.791·11-s − 3.79i·13-s − 1.41i·15-s − 7.58i·17-s + 1.58i·19-s + 3.58·21-s + 3.79i·23-s + 4.37·25-s + 5.00·27-s + 3.79i·29-s + 8.37i·31-s + ⋯
L(s)  = 1  − 1.03·3-s + 0.353i·5-s − 0.755·7-s + 0.0695·9-s + 0.238·11-s − 1.05i·13-s − 0.365i·15-s − 1.83i·17-s + 0.363i·19-s + 0.781·21-s + 0.790i·23-s + 0.874·25-s + 0.962·27-s + 0.704i·29-s + 1.50i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.657 - 0.753i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.657 - 0.753i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2368\)    =    \(2^{6} \cdot 37\)
Sign: $-0.657 - 0.753i$
Analytic conductor: \(18.9085\)
Root analytic conductor: \(4.34839\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2368} (961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2368,\ (\ :1/2),\ -0.657 - 0.753i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3144978821\)
\(L(\frac12)\) \(\approx\) \(0.3144978821\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 + (4 + 4.58i)T \)
good3 \( 1 + 1.79T + 3T^{2} \)
5 \( 1 - 0.791iT - 5T^{2} \)
7 \( 1 + 2T + 7T^{2} \)
11 \( 1 - 0.791T + 11T^{2} \)
13 \( 1 + 3.79iT - 13T^{2} \)
17 \( 1 + 7.58iT - 17T^{2} \)
19 \( 1 - 1.58iT - 19T^{2} \)
23 \( 1 - 3.79iT - 23T^{2} \)
29 \( 1 - 3.79iT - 29T^{2} \)
31 \( 1 - 8.37iT - 31T^{2} \)
41 \( 1 - 9.79T + 41T^{2} \)
43 \( 1 + 6iT - 43T^{2} \)
47 \( 1 + 7.58T + 47T^{2} \)
53 \( 1 - 1.58T + 53T^{2} \)
59 \( 1 - 1.58iT - 59T^{2} \)
61 \( 1 - 12.7iT - 61T^{2} \)
67 \( 1 + 6.37T + 67T^{2} \)
71 \( 1 + 9.16T + 71T^{2} \)
73 \( 1 + 4.37T + 73T^{2} \)
79 \( 1 + 8.20iT - 79T^{2} \)
83 \( 1 + 15.1T + 83T^{2} \)
89 \( 1 + 6iT - 89T^{2} \)
97 \( 1 - 13.5iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.274628977285619658195847610630, −8.635562691457647464926748471809, −7.32360981832508907413864774207, −7.01940088051621009308746880831, −6.03325097743574270061670030505, −5.43678790245032273724440981213, −4.74137803410842131042865470272, −3.34082151828458863412535332824, −2.82197321377527603898724064119, −1.03876516448623958378482270295, 0.14818706024205912780459585894, 1.51991019672301932102880842952, 2.83578311042653996308447391439, 4.08387066834078295097238470514, 4.64509546806035514743474672592, 5.77245418628657951137056206766, 6.33272196991110120972540135389, 6.77010669713409577997910689610, 8.026522380050182768680990946860, 8.715551177699091573902785611356

Graph of the $Z$-function along the critical line