L(s) = 1 | + 2·4-s + 4·7-s − 2·13-s − 2·19-s − 4·25-s + 8·28-s − 2·31-s + 16·37-s + 22·43-s − 2·49-s − 4·52-s + 10·61-s − 8·64-s − 14·67-s + 22·73-s − 4·76-s − 14·79-s − 8·91-s − 14·97-s − 8·100-s − 14·103-s − 2·109-s − 16·121-s − 4·124-s + 127-s + 131-s − 8·133-s + ⋯ |
L(s) = 1 | + 4-s + 1.51·7-s − 0.554·13-s − 0.458·19-s − 4/5·25-s + 1.51·28-s − 0.359·31-s + 2.63·37-s + 3.35·43-s − 2/7·49-s − 0.554·52-s + 1.28·61-s − 64-s − 1.71·67-s + 2.57·73-s − 0.458·76-s − 1.57·79-s − 0.838·91-s − 1.42·97-s − 4/5·100-s − 1.37·103-s − 0.191·109-s − 1.45·121-s − 0.359·124-s + 0.0887·127-s + 0.0873·131-s − 0.693·133-s + ⋯ |
Λ(s)=(=(59049s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(59049s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
59049
= 310
|
Sign: |
1
|
Analytic conductor: |
3.76501 |
Root analytic conductor: |
1.39296 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 59049, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.018472583 |
L(21) |
≈ |
2.018472583 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
good | 2 | C22 | 1−pT2+p2T4 |
| 5 | C22 | 1+4T2+p2T4 |
| 7 | C2 | (1−2T+pT2)2 |
| 11 | C22 | 1+16T2+p2T4 |
| 13 | C2 | (1+T+pT2)2 |
| 17 | C22 | 1−20T2+p2T4 |
| 19 | C2 | (1+T+pT2)2 |
| 23 | C22 | 1+40T2+p2T4 |
| 29 | C22 | 1+34T2+p2T4 |
| 31 | C2 | (1+T+pT2)2 |
| 37 | C2 | (1−8T+pT2)2 |
| 41 | C22 | 1+58T2+p2T4 |
| 43 | C2 | (1−11T+pT2)2 |
| 47 | C22 | 1−2T2+p2T4 |
| 53 | C22 | 1+52T2+p2T4 |
| 59 | C22 | 1+112T2+p2T4 |
| 61 | C2 | (1−5T+pT2)2 |
| 67 | C2 | (1+7T+pT2)2 |
| 71 | C22 | 1+88T2+p2T4 |
| 73 | C2 | (1−11T+pT2)2 |
| 79 | C2 | (1+7T+pT2)2 |
| 83 | C22 | 1+16T2+p2T4 |
| 89 | C2 | (1+pT2)2 |
| 97 | C2 | (1+7T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.18863131069501005241351840304, −11.71630489752962138017706271769, −11.36341435559568201719934172804, −10.98957259426085812164359937729, −10.72633054857364640549729516398, −10.01624557525827670252698459237, −9.373503120959489145087639531418, −9.086887255792082165042347510051, −8.195021880370970742472551747703, −7.79886961415182704033617479477, −7.60162825894856137206908174096, −6.88522256932747131908927626690, −6.28792838733343724695047154582, −5.74897891895457914005886933698, −5.14855857250750191167305147161, −4.35591997396063863904045940049, −4.05301410065910786040085000782, −2.65079034130041710876826775177, −2.34752347581144079652748859470, −1.35764139016953185842768122715,
1.35764139016953185842768122715, 2.34752347581144079652748859470, 2.65079034130041710876826775177, 4.05301410065910786040085000782, 4.35591997396063863904045940049, 5.14855857250750191167305147161, 5.74897891895457914005886933698, 6.28792838733343724695047154582, 6.88522256932747131908927626690, 7.60162825894856137206908174096, 7.79886961415182704033617479477, 8.195021880370970742472551747703, 9.086887255792082165042347510051, 9.373503120959489145087639531418, 10.01624557525827670252698459237, 10.72633054857364640549729516398, 10.98957259426085812164359937729, 11.36341435559568201719934172804, 11.71630489752962138017706271769, 12.18863131069501005241351840304