Properties

Label 2-245-1.1-c9-0-119
Degree $2$
Conductor $245$
Sign $-1$
Analytic cond. $126.183$
Root an. cond. $11.2331$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 31.3·2-s + 228.·3-s + 473.·4-s − 625·5-s + 7.17e3·6-s − 1.21e3·8-s + 3.25e4·9-s − 1.96e4·10-s − 9.01e4·11-s + 1.08e5·12-s − 1.31e5·13-s − 1.42e5·15-s − 2.80e5·16-s + 3.68e5·17-s + 1.02e6·18-s − 272.·19-s − 2.95e5·20-s − 2.82e6·22-s + 8.32e5·23-s − 2.76e5·24-s + 3.90e5·25-s − 4.12e6·26-s + 2.93e6·27-s − 4.44e6·29-s − 4.48e6·30-s − 7.48e6·31-s − 8.18e6·32-s + ⋯
L(s)  = 1  + 1.38·2-s + 1.62·3-s + 0.924·4-s − 0.447·5-s + 2.25·6-s − 0.104·8-s + 1.65·9-s − 0.620·10-s − 1.85·11-s + 1.50·12-s − 1.27·13-s − 0.728·15-s − 1.06·16-s + 1.07·17-s + 2.29·18-s − 0.000479·19-s − 0.413·20-s − 2.57·22-s + 0.620·23-s − 0.170·24-s + 0.200·25-s − 1.76·26-s + 1.06·27-s − 1.16·29-s − 1.01·30-s − 1.45·31-s − 1.37·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(245\)    =    \(5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(126.183\)
Root analytic conductor: \(11.2331\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 245,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 625T \)
7 \( 1 \)
good2 \( 1 - 31.3T + 512T^{2} \)
3 \( 1 - 228.T + 1.96e4T^{2} \)
11 \( 1 + 9.01e4T + 2.35e9T^{2} \)
13 \( 1 + 1.31e5T + 1.06e10T^{2} \)
17 \( 1 - 3.68e5T + 1.18e11T^{2} \)
19 \( 1 + 272.T + 3.22e11T^{2} \)
23 \( 1 - 8.32e5T + 1.80e12T^{2} \)
29 \( 1 + 4.44e6T + 1.45e13T^{2} \)
31 \( 1 + 7.48e6T + 2.64e13T^{2} \)
37 \( 1 + 3.64e6T + 1.29e14T^{2} \)
41 \( 1 - 2.71e7T + 3.27e14T^{2} \)
43 \( 1 + 2.50e7T + 5.02e14T^{2} \)
47 \( 1 - 2.74e7T + 1.11e15T^{2} \)
53 \( 1 + 3.44e7T + 3.29e15T^{2} \)
59 \( 1 + 1.19e8T + 8.66e15T^{2} \)
61 \( 1 + 1.05e8T + 1.16e16T^{2} \)
67 \( 1 - 1.11e8T + 2.72e16T^{2} \)
71 \( 1 - 2.51e8T + 4.58e16T^{2} \)
73 \( 1 + 1.35e8T + 5.88e16T^{2} \)
79 \( 1 - 3.80e8T + 1.19e17T^{2} \)
83 \( 1 + 5.86e8T + 1.86e17T^{2} \)
89 \( 1 + 7.15e8T + 3.50e17T^{2} \)
97 \( 1 - 1.00e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.903522611479031166602235539166, −8.968608128376315265653635777194, −7.71190937943924344836519539167, −7.38289853802031065975814903920, −5.53967434488163939257638447452, −4.73072051186894981197440083161, −3.55186107577350580585713930181, −2.90216980601680388561737478208, −2.10755802700227672838656431860, 0, 2.10755802700227672838656431860, 2.90216980601680388561737478208, 3.55186107577350580585713930181, 4.73072051186894981197440083161, 5.53967434488163939257638447452, 7.38289853802031065975814903920, 7.71190937943924344836519539167, 8.968608128376315265653635777194, 9.903522611479031166602235539166

Graph of the $Z$-function along the critical line