L(s) = 1 | − 3-s + (−1 + i)7-s + 9-s − i·13-s + (1 − i)19-s + (1 − i)21-s + i·25-s − 27-s + (1 + i)31-s + (−1 + i)37-s + i·39-s + 2i·43-s − i·49-s + (−1 + i)57-s + 2i·61-s + ⋯ |
L(s) = 1 | − 3-s + (−1 + i)7-s + 9-s − i·13-s + (1 − i)19-s + (1 − i)21-s + i·25-s − 27-s + (1 + i)31-s + (−1 + i)37-s + i·39-s + 2i·43-s − i·49-s + (−1 + i)57-s + 2i·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.471 - 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.471 - 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6932529888\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6932529888\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 - iT^{2} \) |
| 7 | \( 1 + (1 - i)T - iT^{2} \) |
| 11 | \( 1 - iT^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (-1 + i)T - iT^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (-1 - i)T + iT^{2} \) |
| 37 | \( 1 + (1 - i)T - iT^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 - 2iT - T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 - 2iT - T^{2} \) |
| 67 | \( 1 + (-1 + i)T - iT^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + (-1 - i)T + iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 + (-1 + i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.406341518427697898461927824375, −8.558885721645276825035866258434, −7.55438943503388609809169084480, −6.75680233350580324166495678319, −6.12702657750630376379904436122, −5.34098408582906122664413196981, −4.83094797818488488928753565992, −3.41348833879036424817153220918, −2.73869407454204586645458863627, −1.13384196265056487221457091608,
0.62333462382742577023659708620, 2.00750035431787600840391285944, 3.58734273369507363531222204989, 4.08998479234489716621711418651, 5.09098650939926648015863496159, 5.99948092411251378989704605809, 6.66345525611340441945464359417, 7.19729776648873898314850890504, 8.036966417482462788692381946811, 9.232710527115376021143863825471