L(s) = 1 | − 3-s + (−1 + i)7-s + 9-s − i·13-s + (1 − i)19-s + (1 − i)21-s + i·25-s − 27-s + (1 + i)31-s + (−1 + i)37-s + i·39-s + 2i·43-s − i·49-s + (−1 + i)57-s + 2i·61-s + ⋯ |
L(s) = 1 | − 3-s + (−1 + i)7-s + 9-s − i·13-s + (1 − i)19-s + (1 − i)21-s + i·25-s − 27-s + (1 + i)31-s + (−1 + i)37-s + i·39-s + 2i·43-s − i·49-s + (−1 + i)57-s + 2i·61-s + ⋯ |
Λ(s)=(=(2496s/2ΓC(s)L(s)(0.471−0.881i)Λ(1−s)
Λ(s)=(=(2496s/2ΓC(s)L(s)(0.471−0.881i)Λ(1−s)
Degree: |
2 |
Conductor: |
2496
= 26⋅3⋅13
|
Sign: |
0.471−0.881i
|
Analytic conductor: |
1.24566 |
Root analytic conductor: |
1.11609 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2496(863,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2496, ( :0), 0.471−0.881i)
|
Particular Values
L(21) |
≈ |
0.6932529888 |
L(21) |
≈ |
0.6932529888 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 13 | 1+iT |
good | 5 | 1−iT2 |
| 7 | 1+(1−i)T−iT2 |
| 11 | 1−iT2 |
| 17 | 1+T2 |
| 19 | 1+(−1+i)T−iT2 |
| 23 | 1−T2 |
| 29 | 1+T2 |
| 31 | 1+(−1−i)T+iT2 |
| 37 | 1+(1−i)T−iT2 |
| 41 | 1+iT2 |
| 43 | 1−2iT−T2 |
| 47 | 1+iT2 |
| 53 | 1+T2 |
| 59 | 1−iT2 |
| 61 | 1−2iT−T2 |
| 67 | 1+(−1+i)T−iT2 |
| 71 | 1−iT2 |
| 73 | 1+(−1−i)T+iT2 |
| 79 | 1−T2 |
| 83 | 1+iT2 |
| 89 | 1−iT2 |
| 97 | 1+(−1+i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.406341518427697898461927824375, −8.558885721645276825035866258434, −7.55438943503388609809169084480, −6.75680233350580324166495678319, −6.12702657750630376379904436122, −5.34098408582906122664413196981, −4.83094797818488488928753565992, −3.41348833879036424817153220918, −2.73869407454204586645458863627, −1.13384196265056487221457091608,
0.62333462382742577023659708620, 2.00750035431787600840391285944, 3.58734273369507363531222204989, 4.08998479234489716621711418651, 5.09098650939926648015863496159, 5.99948092411251378989704605809, 6.66345525611340441945464359417, 7.19729776648873898314850890504, 8.036966417482462788692381946811, 9.232710527115376021143863825471