L(s) = 1 | + (1.83 − 0.785i)2-s + (2.76 − 2.88i)4-s + 8.17·5-s − 2.64i·7-s + (2.81 − 7.48i)8-s + (15.0 − 6.42i)10-s + 15.5i·11-s − 20.4·13-s + (−2.07 − 4.86i)14-s + (−0.701 − 15.9i)16-s + 5.97·17-s + 4.19i·19-s + (22.6 − 23.6i)20-s + (12.2 + 28.6i)22-s − 29.3i·23-s + ⋯ |
L(s) = 1 | + (0.919 − 0.392i)2-s + (0.691 − 0.722i)4-s + 1.63·5-s − 0.377i·7-s + (0.352 − 0.935i)8-s + (1.50 − 0.642i)10-s + 1.41i·11-s − 1.57·13-s + (−0.148 − 0.347i)14-s + (−0.0438 − 0.999i)16-s + 0.351·17-s + 0.220i·19-s + (1.13 − 1.18i)20-s + (0.555 + 1.30i)22-s − 1.27i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.722 + 0.691i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.722 + 0.691i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.06393 - 1.22995i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.06393 - 1.22995i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.83 + 0.785i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + 2.64iT \) |
good | 5 | \( 1 - 8.17T + 25T^{2} \) |
| 11 | \( 1 - 15.5iT - 121T^{2} \) |
| 13 | \( 1 + 20.4T + 169T^{2} \) |
| 17 | \( 1 - 5.97T + 289T^{2} \) |
| 19 | \( 1 - 4.19iT - 361T^{2} \) |
| 23 | \( 1 + 29.3iT - 529T^{2} \) |
| 29 | \( 1 - 7.89T + 841T^{2} \) |
| 31 | \( 1 - 35.3iT - 961T^{2} \) |
| 37 | \( 1 + 49.2T + 1.36e3T^{2} \) |
| 41 | \( 1 - 4.11T + 1.68e3T^{2} \) |
| 43 | \( 1 + 19.6iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 30.5iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 40.4T + 2.80e3T^{2} \) |
| 59 | \( 1 - 83.1iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 3.43T + 3.72e3T^{2} \) |
| 67 | \( 1 - 5.17iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 75.1iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 21.5T + 5.32e3T^{2} \) |
| 79 | \( 1 + 62.5iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 58.0iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 135.T + 7.92e3T^{2} \) |
| 97 | \( 1 - 61.8T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.15759297109257409928593022812, −10.36307462835332048903475528870, −10.21754760240950786992181232411, −9.250034145365656606602484700655, −7.29725769954609331194488266267, −6.53153707235630932694330255300, −5.29207035504288866703062729583, −4.57703950084335610532838597755, −2.69715197689494351950952293759, −1.72766111432829072856611742054,
2.08014835690906896639222213825, 3.20733304763936678510245947722, 5.07252529131239786191039343046, 5.68236344952853509400372102353, 6.57441874043086571169584177347, 7.82152967330396910321356740947, 9.088225108272317651196500603991, 9.995250905036845663186283358901, 11.16221582404342950263131417787, 12.14347625567671311092363223065