L(s) = 1 | + (1.83 − 0.785i)2-s + (2.76 − 2.88i)4-s + 8.17·5-s − 2.64i·7-s + (2.81 − 7.48i)8-s + (15.0 − 6.42i)10-s + 15.5i·11-s − 20.4·13-s + (−2.07 − 4.86i)14-s + (−0.701 − 15.9i)16-s + 5.97·17-s + 4.19i·19-s + (22.6 − 23.6i)20-s + (12.2 + 28.6i)22-s − 29.3i·23-s + ⋯ |
L(s) = 1 | + (0.919 − 0.392i)2-s + (0.691 − 0.722i)4-s + 1.63·5-s − 0.377i·7-s + (0.352 − 0.935i)8-s + (1.50 − 0.642i)10-s + 1.41i·11-s − 1.57·13-s + (−0.148 − 0.347i)14-s + (−0.0438 − 0.999i)16-s + 0.351·17-s + 0.220i·19-s + (1.13 − 1.18i)20-s + (0.555 + 1.30i)22-s − 1.27i·23-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)(0.722+0.691i)Λ(3−s)
Λ(s)=(=(252s/2ΓC(s+1)L(s)(0.722+0.691i)Λ(1−s)
Degree: |
2 |
Conductor: |
252
= 22⋅32⋅7
|
Sign: |
0.722+0.691i
|
Analytic conductor: |
6.86650 |
Root analytic conductor: |
2.62040 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ252(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 252, ( :1), 0.722+0.691i)
|
Particular Values
L(23) |
≈ |
3.06393−1.22995i |
L(21) |
≈ |
3.06393−1.22995i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.83+0.785i)T |
| 3 | 1 |
| 7 | 1+2.64iT |
good | 5 | 1−8.17T+25T2 |
| 11 | 1−15.5iT−121T2 |
| 13 | 1+20.4T+169T2 |
| 17 | 1−5.97T+289T2 |
| 19 | 1−4.19iT−361T2 |
| 23 | 1+29.3iT−529T2 |
| 29 | 1−7.89T+841T2 |
| 31 | 1−35.3iT−961T2 |
| 37 | 1+49.2T+1.36e3T2 |
| 41 | 1−4.11T+1.68e3T2 |
| 43 | 1+19.6iT−1.84e3T2 |
| 47 | 1−30.5iT−2.20e3T2 |
| 53 | 1+40.4T+2.80e3T2 |
| 59 | 1−83.1iT−3.48e3T2 |
| 61 | 1+3.43T+3.72e3T2 |
| 67 | 1−5.17iT−4.48e3T2 |
| 71 | 1−75.1iT−5.04e3T2 |
| 73 | 1+21.5T+5.32e3T2 |
| 79 | 1+62.5iT−6.24e3T2 |
| 83 | 1+58.0iT−6.88e3T2 |
| 89 | 1−135.T+7.92e3T2 |
| 97 | 1−61.8T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.15759297109257409928593022812, −10.36307462835332048903475528870, −10.21754760240950786992181232411, −9.250034145365656606602484700655, −7.29725769954609331194488266267, −6.53153707235630932694330255300, −5.29207035504288866703062729583, −4.57703950084335610532838597755, −2.69715197689494351950952293759, −1.72766111432829072856611742054,
2.08014835690906896639222213825, 3.20733304763936678510245947722, 5.07252529131239786191039343046, 5.68236344952853509400372102353, 6.57441874043086571169584177347, 7.82152967330396910321356740947, 9.088225108272317651196500603991, 9.995250905036845663186283358901, 11.16221582404342950263131417787, 12.14347625567671311092363223065