Properties

Label 16-252e8-1.1-c7e8-0-0
Degree $16$
Conductor $1.626\times 10^{19}$
Sign $1$
Analytic cond. $1.47477\times 10^{15}$
Root an. cond. $8.87248$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 196·5-s − 434·7-s − 406·11-s + 3.94e3·13-s + 7.43e3·17-s + 1.58e4·19-s + 6.78e3·23-s + 2.10e5·25-s + 1.89e5·29-s − 5.58e4·31-s − 8.50e4·35-s + 9.37e4·37-s − 1.39e4·41-s − 4.87e5·43-s + 6.50e5·47-s − 8.23e5·49-s − 3.68e5·53-s − 7.95e4·55-s − 9.60e4·59-s − 3.61e6·61-s + 7.73e5·65-s − 3.16e5·67-s − 1.24e7·71-s − 1.28e6·73-s + 1.76e5·77-s + 8.18e6·79-s − 7.38e6·83-s + ⋯
L(s)  = 1  + 0.701·5-s − 0.478·7-s − 0.0919·11-s + 0.498·13-s + 0.367·17-s + 0.530·19-s + 0.116·23-s + 2.69·25-s + 1.43·29-s − 0.336·31-s − 0.335·35-s + 0.304·37-s − 0.0315·41-s − 0.935·43-s + 0.913·47-s − 0.999·49-s − 0.340·53-s − 0.0644·55-s − 0.0608·59-s − 2.04·61-s + 0.349·65-s − 0.128·67-s − 4.12·71-s − 0.387·73-s + 0.0439·77-s + 1.86·79-s − 1.41·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(8-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+7/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{16} \cdot 3^{16} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(1.47477\times 10^{15}\)
Root analytic conductor: \(8.87248\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{16} \cdot 3^{16} \cdot 7^{8} ,\ ( \ : [7/2]^{8} ),\ 1 )\)

Particular Values

\(L(4)\) \(\approx\) \(0.6675390267\)
\(L(\frac12)\) \(\approx\) \(0.6675390267\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + 62 p T + 20644 p^{2} T^{2} + 341944 p^{4} T^{3} + 927659 p^{7} T^{4} + 341944 p^{11} T^{5} + 20644 p^{16} T^{6} + 62 p^{22} T^{7} + p^{28} T^{8} \)
good5 \( 1 - 196 T - 171991 T^{2} + 60428308 T^{3} + 13267243009 T^{4} - 1283882807136 p T^{5} - 423178380922 p^{3} T^{6} + 2051911371257344 p^{3} T^{7} - 48017077629846826 p^{4} T^{8} + 2051911371257344 p^{10} T^{9} - 423178380922 p^{17} T^{10} - 1283882807136 p^{22} T^{11} + 13267243009 p^{28} T^{12} + 60428308 p^{35} T^{13} - 171991 p^{42} T^{14} - 196 p^{49} T^{15} + p^{56} T^{16} \)
11 \( 1 + 406 T - 48633157 T^{2} - 18050768542 T^{3} + 1037248580723101 T^{4} + 207648939251728824 T^{5} - \)\(25\!\cdots\!58\)\( p T^{6} - \)\(17\!\cdots\!56\)\( T^{7} + \)\(73\!\cdots\!06\)\( T^{8} - \)\(17\!\cdots\!56\)\( p^{7} T^{9} - \)\(25\!\cdots\!58\)\( p^{15} T^{10} + 207648939251728824 p^{21} T^{11} + 1037248580723101 p^{28} T^{12} - 18050768542 p^{35} T^{13} - 48633157 p^{42} T^{14} + 406 p^{49} T^{15} + p^{56} T^{16} \)
13 \( ( 1 - 1974 T + 208939117 T^{2} - 412046927534 T^{3} + 18378156938146800 T^{4} - 412046927534 p^{7} T^{5} + 208939117 p^{14} T^{6} - 1974 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
17 \( 1 - 7436 T - 1304530900 T^{2} + 6055545887768 T^{3} + 993238264352979418 T^{4} - \)\(24\!\cdots\!76\)\( T^{5} - \)\(58\!\cdots\!60\)\( T^{6} + \)\(21\!\cdots\!92\)\( p T^{7} + \)\(94\!\cdots\!27\)\( p^{2} T^{8} + \)\(21\!\cdots\!92\)\( p^{8} T^{9} - \)\(58\!\cdots\!60\)\( p^{14} T^{10} - \)\(24\!\cdots\!76\)\( p^{21} T^{11} + 993238264352979418 p^{28} T^{12} + 6055545887768 p^{35} T^{13} - 1304530900 p^{42} T^{14} - 7436 p^{49} T^{15} + p^{56} T^{16} \)
19 \( 1 - 15874 T - 1825616913 T^{2} - 35050750154462 T^{3} + 2528615806290940817 T^{4} + \)\(60\!\cdots\!32\)\( T^{5} - \)\(41\!\cdots\!74\)\( T^{6} - \)\(39\!\cdots\!00\)\( T^{7} - \)\(47\!\cdots\!54\)\( T^{8} - \)\(39\!\cdots\!00\)\( p^{7} T^{9} - \)\(41\!\cdots\!74\)\( p^{14} T^{10} + \)\(60\!\cdots\!32\)\( p^{21} T^{11} + 2528615806290940817 p^{28} T^{12} - 35050750154462 p^{35} T^{13} - 1825616913 p^{42} T^{14} - 15874 p^{49} T^{15} + p^{56} T^{16} \)
23 \( 1 - 6788 T - 193987412 p T^{2} + 45990947182904 T^{3} - 8251585987926346982 T^{4} + \)\(81\!\cdots\!72\)\( T^{5} - \)\(22\!\cdots\!88\)\( T^{6} - \)\(53\!\cdots\!16\)\( T^{7} + \)\(43\!\cdots\!71\)\( T^{8} - \)\(53\!\cdots\!16\)\( p^{7} T^{9} - \)\(22\!\cdots\!88\)\( p^{14} T^{10} + \)\(81\!\cdots\!72\)\( p^{21} T^{11} - 8251585987926346982 p^{28} T^{12} + 45990947182904 p^{35} T^{13} - 193987412 p^{43} T^{14} - 6788 p^{49} T^{15} + p^{56} T^{16} \)
29 \( ( 1 - 94544 T + 39034925795 T^{2} - 6585126243044520 T^{3} + \)\(72\!\cdots\!16\)\( T^{4} - 6585126243044520 p^{7} T^{5} + 39034925795 p^{14} T^{6} - 94544 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
31 \( 1 + 55890 T - 40459286872 T^{2} - 12970120608204280 T^{3} + \)\(29\!\cdots\!71\)\( T^{4} + \)\(41\!\cdots\!00\)\( T^{5} + \)\(62\!\cdots\!88\)\( T^{6} - \)\(64\!\cdots\!10\)\( T^{7} - \)\(21\!\cdots\!36\)\( T^{8} - \)\(64\!\cdots\!10\)\( p^{7} T^{9} + \)\(62\!\cdots\!88\)\( p^{14} T^{10} + \)\(41\!\cdots\!00\)\( p^{21} T^{11} + \)\(29\!\cdots\!71\)\( p^{28} T^{12} - 12970120608204280 p^{35} T^{13} - 40459286872 p^{42} T^{14} + 55890 p^{49} T^{15} + p^{56} T^{16} \)
37 \( 1 - 93742 T - 13501435137 T^{2} - 8046691878917306 T^{3} - \)\(11\!\cdots\!43\)\( T^{4} + \)\(27\!\cdots\!80\)\( T^{5} + \)\(15\!\cdots\!66\)\( T^{6} - \)\(73\!\cdots\!88\)\( T^{7} + \)\(89\!\cdots\!78\)\( T^{8} - \)\(73\!\cdots\!88\)\( p^{7} T^{9} + \)\(15\!\cdots\!66\)\( p^{14} T^{10} + \)\(27\!\cdots\!80\)\( p^{21} T^{11} - \)\(11\!\cdots\!43\)\( p^{28} T^{12} - 8046691878917306 p^{35} T^{13} - 13501435137 p^{42} T^{14} - 93742 p^{49} T^{15} + p^{56} T^{16} \)
41 \( ( 1 + 6972 T + 179204422376 T^{2} - 22687004651735916 T^{3} + \)\(68\!\cdots\!86\)\( T^{4} - 22687004651735916 p^{7} T^{5} + 179204422376 p^{14} T^{6} + 6972 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
43 \( ( 1 + 243922 T + 668754369745 T^{2} + 172816838450048086 T^{3} + \)\(21\!\cdots\!36\)\( T^{4} + 172816838450048086 p^{7} T^{5} + 668754369745 p^{14} T^{6} + 243922 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
47 \( 1 - 650484 T - 1044494449676 T^{2} + 955011641322928248 T^{3} + \)\(54\!\cdots\!62\)\( T^{4} - \)\(60\!\cdots\!60\)\( T^{5} - \)\(93\!\cdots\!16\)\( T^{6} + \)\(15\!\cdots\!56\)\( T^{7} - \)\(31\!\cdots\!65\)\( T^{8} + \)\(15\!\cdots\!56\)\( p^{7} T^{9} - \)\(93\!\cdots\!16\)\( p^{14} T^{10} - \)\(60\!\cdots\!60\)\( p^{21} T^{11} + \)\(54\!\cdots\!62\)\( p^{28} T^{12} + 955011641322928248 p^{35} T^{13} - 1044494449676 p^{42} T^{14} - 650484 p^{49} T^{15} + p^{56} T^{16} \)
53 \( 1 + 6960 p T - 2457037969043 T^{2} - 2322920472920175120 T^{3} + \)\(23\!\cdots\!69\)\( T^{4} + \)\(34\!\cdots\!00\)\( T^{5} - \)\(57\!\cdots\!06\)\( T^{6} - \)\(19\!\cdots\!60\)\( T^{7} + \)\(11\!\cdots\!58\)\( T^{8} - \)\(19\!\cdots\!60\)\( p^{7} T^{9} - \)\(57\!\cdots\!06\)\( p^{14} T^{10} + \)\(34\!\cdots\!00\)\( p^{21} T^{11} + \)\(23\!\cdots\!69\)\( p^{28} T^{12} - 2322920472920175120 p^{35} T^{13} - 2457037969043 p^{42} T^{14} + 6960 p^{50} T^{15} + p^{56} T^{16} \)
59 \( 1 + 96026 T - 6920178417697 T^{2} - 5620425672203653874 T^{3} + \)\(26\!\cdots\!93\)\( T^{4} + \)\(25\!\cdots\!12\)\( T^{5} - \)\(54\!\cdots\!82\)\( T^{6} - \)\(34\!\cdots\!52\)\( T^{7} + \)\(10\!\cdots\!54\)\( T^{8} - \)\(34\!\cdots\!52\)\( p^{7} T^{9} - \)\(54\!\cdots\!82\)\( p^{14} T^{10} + \)\(25\!\cdots\!12\)\( p^{21} T^{11} + \)\(26\!\cdots\!93\)\( p^{28} T^{12} - 5620425672203653874 p^{35} T^{13} - 6920178417697 p^{42} T^{14} + 96026 p^{49} T^{15} + p^{56} T^{16} \)
61 \( 1 + 3618156 T - 1321680544372 T^{2} - 12594132072707290648 T^{3} + \)\(19\!\cdots\!98\)\( T^{4} + \)\(53\!\cdots\!56\)\( T^{5} - \)\(59\!\cdots\!12\)\( T^{6} - \)\(43\!\cdots\!00\)\( T^{7} + \)\(42\!\cdots\!87\)\( T^{8} - \)\(43\!\cdots\!00\)\( p^{7} T^{9} - \)\(59\!\cdots\!12\)\( p^{14} T^{10} + \)\(53\!\cdots\!56\)\( p^{21} T^{11} + \)\(19\!\cdots\!98\)\( p^{28} T^{12} - 12594132072707290648 p^{35} T^{13} - 1321680544372 p^{42} T^{14} + 3618156 p^{49} T^{15} + p^{56} T^{16} \)
67 \( 1 + 316006 T - 21543494327325 T^{2} - 920188823290287798 T^{3} + \)\(27\!\cdots\!13\)\( T^{4} - \)\(11\!\cdots\!04\)\( T^{5} - \)\(24\!\cdots\!30\)\( T^{6} + \)\(36\!\cdots\!36\)\( T^{7} + \)\(17\!\cdots\!78\)\( T^{8} + \)\(36\!\cdots\!36\)\( p^{7} T^{9} - \)\(24\!\cdots\!30\)\( p^{14} T^{10} - \)\(11\!\cdots\!04\)\( p^{21} T^{11} + \)\(27\!\cdots\!13\)\( p^{28} T^{12} - 920188823290287798 p^{35} T^{13} - 21543494327325 p^{42} T^{14} + 316006 p^{49} T^{15} + p^{56} T^{16} \)
71 \( ( 1 + 6218156 T + 46176745736588 T^{2} + \)\(17\!\cdots\!76\)\( T^{3} + \)\(67\!\cdots\!62\)\( T^{4} + \)\(17\!\cdots\!76\)\( p^{7} T^{5} + 46176745736588 p^{14} T^{6} + 6218156 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
73 \( 1 + 1287286 T - 36333104982741 T^{2} - 36377980881729081894 T^{3} + \)\(79\!\cdots\!17\)\( T^{4} + \)\(55\!\cdots\!44\)\( T^{5} - \)\(12\!\cdots\!94\)\( T^{6} - \)\(25\!\cdots\!56\)\( T^{7} + \)\(15\!\cdots\!02\)\( T^{8} - \)\(25\!\cdots\!56\)\( p^{7} T^{9} - \)\(12\!\cdots\!94\)\( p^{14} T^{10} + \)\(55\!\cdots\!44\)\( p^{21} T^{11} + \)\(79\!\cdots\!17\)\( p^{28} T^{12} - 36377980881729081894 p^{35} T^{13} - 36333104982741 p^{42} T^{14} + 1287286 p^{49} T^{15} + p^{56} T^{16} \)
79 \( 1 - 8187282 T - 4574229425368 T^{2} + \)\(32\!\cdots\!92\)\( T^{3} - \)\(61\!\cdots\!49\)\( T^{4} - \)\(85\!\cdots\!00\)\( T^{5} + \)\(45\!\cdots\!40\)\( T^{6} + \)\(64\!\cdots\!50\)\( T^{7} - \)\(10\!\cdots\!00\)\( T^{8} + \)\(64\!\cdots\!50\)\( p^{7} T^{9} + \)\(45\!\cdots\!40\)\( p^{14} T^{10} - \)\(85\!\cdots\!00\)\( p^{21} T^{11} - \)\(61\!\cdots\!49\)\( p^{28} T^{12} + \)\(32\!\cdots\!92\)\( p^{35} T^{13} - 4574229425368 p^{42} T^{14} - 8187282 p^{49} T^{15} + p^{56} T^{16} \)
83 \( ( 1 + 3693650 T + 66867395206505 T^{2} + \)\(20\!\cdots\!94\)\( T^{3} + \)\(22\!\cdots\!04\)\( T^{4} + \)\(20\!\cdots\!94\)\( p^{7} T^{5} + 66867395206505 p^{14} T^{6} + 3693650 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
89 \( 1 - 14489928 T + 130849624837552 T^{2} - \)\(13\!\cdots\!44\)\( T^{3} + \)\(10\!\cdots\!14\)\( T^{4} - \)\(80\!\cdots\!44\)\( T^{5} + \)\(62\!\cdots\!64\)\( T^{6} - \)\(44\!\cdots\!04\)\( T^{7} + \)\(29\!\cdots\!07\)\( T^{8} - \)\(44\!\cdots\!04\)\( p^{7} T^{9} + \)\(62\!\cdots\!64\)\( p^{14} T^{10} - \)\(80\!\cdots\!44\)\( p^{21} T^{11} + \)\(10\!\cdots\!14\)\( p^{28} T^{12} - \)\(13\!\cdots\!44\)\( p^{35} T^{13} + 130849624837552 p^{42} T^{14} - 14489928 p^{49} T^{15} + p^{56} T^{16} \)
97 \( ( 1 - 11861290 T + 293699437376665 T^{2} - \)\(23\!\cdots\!50\)\( T^{3} + \)\(33\!\cdots\!96\)\( T^{4} - \)\(23\!\cdots\!50\)\( p^{7} T^{5} + 293699437376665 p^{14} T^{6} - 11861290 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.11640199178377804158937536517, −4.02941160619509091429328695712, −3.63946491012215234161819536615, −3.57525761326963691443238244939, −3.57039623751030723699540068757, −3.26374709063686183364340852005, −3.00604148979713549724028203676, −2.89144378615272882517029530909, −2.86970790358564565307432731827, −2.83664116978822550521456735145, −2.64415035682650806199469710945, −2.53372597823955207811371459545, −2.04602916241435331646228323424, −1.96975271882392169255797763567, −1.79181477035950271719873405015, −1.66549646097759614940660066468, −1.61049876081004190740919787507, −1.27059786092752704755898133808, −1.03403100746666326596827437535, −1.00327583645059533311531871694, −0.960498982499725815952875876201, −0.71836774912779540533256298652, −0.51540624461453908347647768798, −0.12446281543321810294947183492, −0.082667881330453216909519311416, 0.082667881330453216909519311416, 0.12446281543321810294947183492, 0.51540624461453908347647768798, 0.71836774912779540533256298652, 0.960498982499725815952875876201, 1.00327583645059533311531871694, 1.03403100746666326596827437535, 1.27059786092752704755898133808, 1.61049876081004190740919787507, 1.66549646097759614940660066468, 1.79181477035950271719873405015, 1.96975271882392169255797763567, 2.04602916241435331646228323424, 2.53372597823955207811371459545, 2.64415035682650806199469710945, 2.83664116978822550521456735145, 2.86970790358564565307432731827, 2.89144378615272882517029530909, 3.00604148979713549724028203676, 3.26374709063686183364340852005, 3.57039623751030723699540068757, 3.57525761326963691443238244939, 3.63946491012215234161819536615, 4.02941160619509091429328695712, 4.11640199178377804158937536517

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.