Properties

Label 2-252-7.4-c7-0-1
Degree 22
Conductor 252252
Sign 0.980+0.196i-0.980 + 0.196i
Analytic cond. 78.721078.7210
Root an. cond. 8.872488.87248
Motivic weight 77
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (194. + 336. i)5-s + (−876. − 235. i)7-s + (509. − 883. i)11-s + 2.94e3·13-s + (−3.44e3 + 5.96e3i)17-s + (1.22e4 + 2.12e4i)19-s + (−4.39e3 − 7.60e3i)23-s + (−3.64e4 + 6.30e4i)25-s + 7.96e3·29-s + (−1.60e5 + 2.77e5i)31-s + (−9.10e4 − 3.40e5i)35-s + (4.27e4 + 7.40e4i)37-s − 5.71e5·41-s + 1.43e5·43-s + (−3.38e5 − 5.86e5i)47-s + ⋯
L(s)  = 1  + (0.695 + 1.20i)5-s + (−0.965 − 0.259i)7-s + (0.115 − 0.200i)11-s + 0.371·13-s + (−0.169 + 0.294i)17-s + (0.411 + 0.712i)19-s + (−0.0752 − 0.130i)23-s + (−0.466 + 0.807i)25-s + 0.0606·29-s + (−0.965 + 1.67i)31-s + (−0.358 − 1.34i)35-s + (0.138 + 0.240i)37-s − 1.29·41-s + 0.275·43-s + (−0.475 − 0.823i)47-s + ⋯

Functional equation

Λ(s)=(252s/2ΓC(s)L(s)=((0.980+0.196i)Λ(8s)\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.980 + 0.196i)\, \overline{\Lambda}(8-s) \end{aligned}
Λ(s)=(252s/2ΓC(s+7/2)L(s)=((0.980+0.196i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.980 + 0.196i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 252252    =    223272^{2} \cdot 3^{2} \cdot 7
Sign: 0.980+0.196i-0.980 + 0.196i
Analytic conductor: 78.721078.7210
Root analytic conductor: 8.872488.87248
Motivic weight: 77
Rational: no
Arithmetic: yes
Character: χ252(109,)\chi_{252} (109, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 252, ( :7/2), 0.980+0.196i)(2,\ 252,\ (\ :7/2),\ -0.980 + 0.196i)

Particular Values

L(4)L(4) \approx 0.57097801960.5709780196
L(12)L(\frac12) \approx 0.57097801960.5709780196
L(92)L(\frac{9}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
7 1+(876.+235.i)T 1 + (876. + 235. i)T
good5 1+(194.336.i)T+(3.90e4+6.76e4i)T2 1 + (-194. - 336. i)T + (-3.90e4 + 6.76e4i)T^{2}
11 1+(509.+883.i)T+(9.74e61.68e7i)T2 1 + (-509. + 883. i)T + (-9.74e6 - 1.68e7i)T^{2}
13 12.94e3T+6.27e7T2 1 - 2.94e3T + 6.27e7T^{2}
17 1+(3.44e35.96e3i)T+(2.05e83.55e8i)T2 1 + (3.44e3 - 5.96e3i)T + (-2.05e8 - 3.55e8i)T^{2}
19 1+(1.22e42.12e4i)T+(4.46e8+7.74e8i)T2 1 + (-1.22e4 - 2.12e4i)T + (-4.46e8 + 7.74e8i)T^{2}
23 1+(4.39e3+7.60e3i)T+(1.70e9+2.94e9i)T2 1 + (4.39e3 + 7.60e3i)T + (-1.70e9 + 2.94e9i)T^{2}
29 17.96e3T+1.72e10T2 1 - 7.96e3T + 1.72e10T^{2}
31 1+(1.60e52.77e5i)T+(1.37e102.38e10i)T2 1 + (1.60e5 - 2.77e5i)T + (-1.37e10 - 2.38e10i)T^{2}
37 1+(4.27e47.40e4i)T+(4.74e10+8.22e10i)T2 1 + (-4.27e4 - 7.40e4i)T + (-4.74e10 + 8.22e10i)T^{2}
41 1+5.71e5T+1.94e11T2 1 + 5.71e5T + 1.94e11T^{2}
43 11.43e5T+2.71e11T2 1 - 1.43e5T + 2.71e11T^{2}
47 1+(3.38e5+5.86e5i)T+(2.53e11+4.38e11i)T2 1 + (3.38e5 + 5.86e5i)T + (-2.53e11 + 4.38e11i)T^{2}
53 1+(4.11e47.13e4i)T+(5.87e111.01e12i)T2 1 + (4.11e4 - 7.13e4i)T + (-5.87e11 - 1.01e12i)T^{2}
59 1+(1.26e6+2.19e6i)T+(1.24e122.15e12i)T2 1 + (-1.26e6 + 2.19e6i)T + (-1.24e12 - 2.15e12i)T^{2}
61 1+(4.20e5+7.28e5i)T+(1.57e12+2.72e12i)T2 1 + (4.20e5 + 7.28e5i)T + (-1.57e12 + 2.72e12i)T^{2}
67 1+(1.10e6+1.91e6i)T+(3.03e125.24e12i)T2 1 + (-1.10e6 + 1.91e6i)T + (-3.03e12 - 5.24e12i)T^{2}
71 1+1.63e6T+9.09e12T2 1 + 1.63e6T + 9.09e12T^{2}
73 1+(2.09e63.63e6i)T+(5.52e129.56e12i)T2 1 + (2.09e6 - 3.63e6i)T + (-5.52e12 - 9.56e12i)T^{2}
79 1+(1.73e6+3.00e6i)T+(9.60e12+1.66e13i)T2 1 + (1.73e6 + 3.00e6i)T + (-9.60e12 + 1.66e13i)T^{2}
83 1+8.82e6T+2.71e13T2 1 + 8.82e6T + 2.71e13T^{2}
89 1+(2.58e64.47e6i)T+(2.21e13+3.83e13i)T2 1 + (-2.58e6 - 4.47e6i)T + (-2.21e13 + 3.83e13i)T^{2}
97 1+1.34e7T+8.07e13T2 1 + 1.34e7T + 8.07e13T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.05140218146391569300691356774, −10.31236563584744120487924598900, −9.648926690473251621807451805621, −8.450394428539067383356496794782, −7.03292936132240950471953356752, −6.48325258943780753362999688984, −5.48519058773169409002567752017, −3.70801476207716751754005918110, −2.94353645330222181909802782761, −1.59360927568734609810565129808, 0.12818363801896014559352687830, 1.32269035525265063854496139975, 2.62819995060171954256372537433, 4.06651693859808295164186031989, 5.27537126071092081942945372422, 6.07654696043166602461056356307, 7.25895026720436666877129552458, 8.645017336601761792717726204071, 9.321810947848119891438418487259, 9.973620061306633457874190633963

Graph of the ZZ-function along the critical line