L(s) = 1 | + (194. + 336. i)5-s + (−876. − 235. i)7-s + (509. − 883. i)11-s + 2.94e3·13-s + (−3.44e3 + 5.96e3i)17-s + (1.22e4 + 2.12e4i)19-s + (−4.39e3 − 7.60e3i)23-s + (−3.64e4 + 6.30e4i)25-s + 7.96e3·29-s + (−1.60e5 + 2.77e5i)31-s + (−9.10e4 − 3.40e5i)35-s + (4.27e4 + 7.40e4i)37-s − 5.71e5·41-s + 1.43e5·43-s + (−3.38e5 − 5.86e5i)47-s + ⋯ |
L(s) = 1 | + (0.695 + 1.20i)5-s + (−0.965 − 0.259i)7-s + (0.115 − 0.200i)11-s + 0.371·13-s + (−0.169 + 0.294i)17-s + (0.411 + 0.712i)19-s + (−0.0752 − 0.130i)23-s + (−0.466 + 0.807i)25-s + 0.0606·29-s + (−0.965 + 1.67i)31-s + (−0.358 − 1.34i)35-s + (0.138 + 0.240i)37-s − 1.29·41-s + 0.275·43-s + (−0.475 − 0.823i)47-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)(−0.980+0.196i)Λ(8−s)
Λ(s)=(=(252s/2ΓC(s+7/2)L(s)(−0.980+0.196i)Λ(1−s)
Degree: |
2 |
Conductor: |
252
= 22⋅32⋅7
|
Sign: |
−0.980+0.196i
|
Analytic conductor: |
78.7210 |
Root analytic conductor: |
8.87248 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ252(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 252, ( :7/2), −0.980+0.196i)
|
Particular Values
L(4) |
≈ |
0.5709780196 |
L(21) |
≈ |
0.5709780196 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(876.+235.i)T |
good | 5 | 1+(−194.−336.i)T+(−3.90e4+6.76e4i)T2 |
| 11 | 1+(−509.+883.i)T+(−9.74e6−1.68e7i)T2 |
| 13 | 1−2.94e3T+6.27e7T2 |
| 17 | 1+(3.44e3−5.96e3i)T+(−2.05e8−3.55e8i)T2 |
| 19 | 1+(−1.22e4−2.12e4i)T+(−4.46e8+7.74e8i)T2 |
| 23 | 1+(4.39e3+7.60e3i)T+(−1.70e9+2.94e9i)T2 |
| 29 | 1−7.96e3T+1.72e10T2 |
| 31 | 1+(1.60e5−2.77e5i)T+(−1.37e10−2.38e10i)T2 |
| 37 | 1+(−4.27e4−7.40e4i)T+(−4.74e10+8.22e10i)T2 |
| 41 | 1+5.71e5T+1.94e11T2 |
| 43 | 1−1.43e5T+2.71e11T2 |
| 47 | 1+(3.38e5+5.86e5i)T+(−2.53e11+4.38e11i)T2 |
| 53 | 1+(4.11e4−7.13e4i)T+(−5.87e11−1.01e12i)T2 |
| 59 | 1+(−1.26e6+2.19e6i)T+(−1.24e12−2.15e12i)T2 |
| 61 | 1+(4.20e5+7.28e5i)T+(−1.57e12+2.72e12i)T2 |
| 67 | 1+(−1.10e6+1.91e6i)T+(−3.03e12−5.24e12i)T2 |
| 71 | 1+1.63e6T+9.09e12T2 |
| 73 | 1+(2.09e6−3.63e6i)T+(−5.52e12−9.56e12i)T2 |
| 79 | 1+(1.73e6+3.00e6i)T+(−9.60e12+1.66e13i)T2 |
| 83 | 1+8.82e6T+2.71e13T2 |
| 89 | 1+(−2.58e6−4.47e6i)T+(−2.21e13+3.83e13i)T2 |
| 97 | 1+1.34e7T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.05140218146391569300691356774, −10.31236563584744120487924598900, −9.648926690473251621807451805621, −8.450394428539067383356496794782, −7.03292936132240950471953356752, −6.48325258943780753362999688984, −5.48519058773169409002567752017, −3.70801476207716751754005918110, −2.94353645330222181909802782761, −1.59360927568734609810565129808,
0.12818363801896014559352687830, 1.32269035525265063854496139975, 2.62819995060171954256372537433, 4.06651693859808295164186031989, 5.27537126071092081942945372422, 6.07654696043166602461056356307, 7.25895026720436666877129552458, 8.645017336601761792717726204071, 9.321810947848119891438418487259, 9.973620061306633457874190633963