L(s) = 1 | + (194. + 336. i)5-s + (−876. − 235. i)7-s + (509. − 883. i)11-s + 2.94e3·13-s + (−3.44e3 + 5.96e3i)17-s + (1.22e4 + 2.12e4i)19-s + (−4.39e3 − 7.60e3i)23-s + (−3.64e4 + 6.30e4i)25-s + 7.96e3·29-s + (−1.60e5 + 2.77e5i)31-s + (−9.10e4 − 3.40e5i)35-s + (4.27e4 + 7.40e4i)37-s − 5.71e5·41-s + 1.43e5·43-s + (−3.38e5 − 5.86e5i)47-s + ⋯ |
L(s) = 1 | + (0.695 + 1.20i)5-s + (−0.965 − 0.259i)7-s + (0.115 − 0.200i)11-s + 0.371·13-s + (−0.169 + 0.294i)17-s + (0.411 + 0.712i)19-s + (−0.0752 − 0.130i)23-s + (−0.466 + 0.807i)25-s + 0.0606·29-s + (−0.965 + 1.67i)31-s + (−0.358 − 1.34i)35-s + (0.138 + 0.240i)37-s − 1.29·41-s + 0.275·43-s + (−0.475 − 0.823i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.980 + 0.196i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.980 + 0.196i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.5709780196\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5709780196\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (876. + 235. i)T \) |
good | 5 | \( 1 + (-194. - 336. i)T + (-3.90e4 + 6.76e4i)T^{2} \) |
| 11 | \( 1 + (-509. + 883. i)T + (-9.74e6 - 1.68e7i)T^{2} \) |
| 13 | \( 1 - 2.94e3T + 6.27e7T^{2} \) |
| 17 | \( 1 + (3.44e3 - 5.96e3i)T + (-2.05e8 - 3.55e8i)T^{2} \) |
| 19 | \( 1 + (-1.22e4 - 2.12e4i)T + (-4.46e8 + 7.74e8i)T^{2} \) |
| 23 | \( 1 + (4.39e3 + 7.60e3i)T + (-1.70e9 + 2.94e9i)T^{2} \) |
| 29 | \( 1 - 7.96e3T + 1.72e10T^{2} \) |
| 31 | \( 1 + (1.60e5 - 2.77e5i)T + (-1.37e10 - 2.38e10i)T^{2} \) |
| 37 | \( 1 + (-4.27e4 - 7.40e4i)T + (-4.74e10 + 8.22e10i)T^{2} \) |
| 41 | \( 1 + 5.71e5T + 1.94e11T^{2} \) |
| 43 | \( 1 - 1.43e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + (3.38e5 + 5.86e5i)T + (-2.53e11 + 4.38e11i)T^{2} \) |
| 53 | \( 1 + (4.11e4 - 7.13e4i)T + (-5.87e11 - 1.01e12i)T^{2} \) |
| 59 | \( 1 + (-1.26e6 + 2.19e6i)T + (-1.24e12 - 2.15e12i)T^{2} \) |
| 61 | \( 1 + (4.20e5 + 7.28e5i)T + (-1.57e12 + 2.72e12i)T^{2} \) |
| 67 | \( 1 + (-1.10e6 + 1.91e6i)T + (-3.03e12 - 5.24e12i)T^{2} \) |
| 71 | \( 1 + 1.63e6T + 9.09e12T^{2} \) |
| 73 | \( 1 + (2.09e6 - 3.63e6i)T + (-5.52e12 - 9.56e12i)T^{2} \) |
| 79 | \( 1 + (1.73e6 + 3.00e6i)T + (-9.60e12 + 1.66e13i)T^{2} \) |
| 83 | \( 1 + 8.82e6T + 2.71e13T^{2} \) |
| 89 | \( 1 + (-2.58e6 - 4.47e6i)T + (-2.21e13 + 3.83e13i)T^{2} \) |
| 97 | \( 1 + 1.34e7T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.05140218146391569300691356774, −10.31236563584744120487924598900, −9.648926690473251621807451805621, −8.450394428539067383356496794782, −7.03292936132240950471953356752, −6.48325258943780753362999688984, −5.48519058773169409002567752017, −3.70801476207716751754005918110, −2.94353645330222181909802782761, −1.59360927568734609810565129808,
0.12818363801896014559352687830, 1.32269035525265063854496139975, 2.62819995060171954256372537433, 4.06651693859808295164186031989, 5.27537126071092081942945372422, 6.07654696043166602461056356307, 7.25895026720436666877129552458, 8.645017336601761792717726204071, 9.321810947848119891438418487259, 9.973620061306633457874190633963