L(s) = 1 | + (0.781 + 0.623i)3-s + (−0.623 − 0.781i)4-s + (0.385 − 0.483i)7-s + (0.222 + 0.974i)9-s − 0.999i·12-s + (−0.360 + 1.57i)13-s + (−0.222 + 0.974i)16-s + (1.26 − 1.00i)19-s + (0.602 − 0.137i)21-s + (0.623 + 0.781i)25-s + (−0.433 + 0.900i)27-s − 0.618·28-s + (0.268 − 0.556i)31-s + (0.623 − 0.781i)36-s + (1.57 − 0.360i)37-s + ⋯ |
L(s) = 1 | + (0.781 + 0.623i)3-s + (−0.623 − 0.781i)4-s + (0.385 − 0.483i)7-s + (0.222 + 0.974i)9-s − 0.999i·12-s + (−0.360 + 1.57i)13-s + (−0.222 + 0.974i)16-s + (1.26 − 1.00i)19-s + (0.602 − 0.137i)21-s + (0.623 + 0.781i)25-s + (−0.433 + 0.900i)27-s − 0.618·28-s + (0.268 − 0.556i)31-s + (0.623 − 0.781i)36-s + (1.57 − 0.360i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.942 - 0.335i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.942 - 0.335i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.455110946\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.455110946\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.781 - 0.623i)T \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 5 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 7 | \( 1 + (-0.385 + 0.483i)T + (-0.222 - 0.974i)T^{2} \) |
| 11 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 13 | \( 1 + (0.360 - 1.57i)T + (-0.900 - 0.433i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (-1.26 + 1.00i)T + (0.222 - 0.974i)T^{2} \) |
| 23 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 31 | \( 1 + (-0.268 + 0.556i)T + (-0.623 - 0.781i)T^{2} \) |
| 37 | \( 1 + (-1.57 + 0.360i)T + (0.900 - 0.433i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (0.268 + 0.556i)T + (-0.623 + 0.781i)T^{2} \) |
| 47 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 53 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (-0.483 - 0.385i)T + (0.222 + 0.974i)T^{2} \) |
| 67 | \( 1 + (0.360 + 1.57i)T + (-0.900 + 0.433i)T^{2} \) |
| 71 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (0.702 + 1.45i)T + (-0.623 + 0.781i)T^{2} \) |
| 79 | \( 1 + (1.57 - 0.360i)T + (0.900 - 0.433i)T^{2} \) |
| 83 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 89 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 97 | \( 1 + (-0.483 + 0.385i)T + (0.222 - 0.974i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.375219800465892533539719422857, −8.645276795649274092509916741694, −7.62181512236734829941441048950, −7.02425549273816468371628050513, −5.89943509515140031562867096852, −4.81162132200099413599885244953, −4.57363988868802748867685518966, −3.62198921196768281771707073153, −2.43033800641773447430458121297, −1.31644057167563678991335379583,
1.10318329860255211215828082534, 2.65441282000869974593491744312, 3.10246561225103306961909115897, 4.10365560758278354084279566051, 5.12759190305296098999319576364, 5.90945381171841174241666995994, 7.07619858775593197315347560630, 7.77197833128690329917996854020, 8.239484908283213971399584377041, 8.744556847472592540370265420983