L(s) = 1 | − 0.144·2-s + 3-s − 1.97·4-s + 1.55·5-s − 0.144·6-s − 1.52·7-s + 0.574·8-s + 9-s − 0.224·10-s − 0.767·11-s − 1.97·12-s − 2.61·13-s + 0.220·14-s + 1.55·15-s + 3.87·16-s − 3.51·17-s − 0.144·18-s + 5.24·19-s − 3.07·20-s − 1.52·21-s + 0.110·22-s + 8.49·23-s + 0.574·24-s − 2.58·25-s + 0.377·26-s + 27-s + 3.02·28-s + ⋯ |
L(s) = 1 | − 0.102·2-s + 0.577·3-s − 0.989·4-s + 0.695·5-s − 0.0589·6-s − 0.577·7-s + 0.203·8-s + 0.333·9-s − 0.0709·10-s − 0.231·11-s − 0.571·12-s − 0.726·13-s + 0.0589·14-s + 0.401·15-s + 0.968·16-s − 0.852·17-s − 0.0340·18-s + 1.20·19-s − 0.687·20-s − 0.333·21-s + 0.0236·22-s + 1.77·23-s + 0.117·24-s − 0.516·25-s + 0.0741·26-s + 0.192·27-s + 0.571·28-s + ⋯ |
Λ(s)=(=(2523s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2523s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.669572283 |
L(21) |
≈ |
1.669572283 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 29 | 1 |
good | 2 | 1+0.144T+2T2 |
| 5 | 1−1.55T+5T2 |
| 7 | 1+1.52T+7T2 |
| 11 | 1+0.767T+11T2 |
| 13 | 1+2.61T+13T2 |
| 17 | 1+3.51T+17T2 |
| 19 | 1−5.24T+19T2 |
| 23 | 1−8.49T+23T2 |
| 31 | 1+1.41T+31T2 |
| 37 | 1+3.00T+37T2 |
| 41 | 1−5.79T+41T2 |
| 43 | 1−4.29T+43T2 |
| 47 | 1−1.77T+47T2 |
| 53 | 1−6.77T+53T2 |
| 59 | 1−14.9T+59T2 |
| 61 | 1−13.7T+61T2 |
| 67 | 1+7.29T+67T2 |
| 71 | 1+4.81T+71T2 |
| 73 | 1−9.19T+73T2 |
| 79 | 1−0.545T+79T2 |
| 83 | 1−11.6T+83T2 |
| 89 | 1−13.7T+89T2 |
| 97 | 1+1.77T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.210375907212062813786111151244, −8.301741840946682430188224384520, −7.41659548121123750374721641780, −6.76541088176346544800293683128, −5.57395986418026934343744725035, −5.05689275118751751026067913563, −4.05829933450750100228103494494, −3.14610368748903989360520842296, −2.24123475052888654306924849141, −0.818623466191123082196960760735,
0.818623466191123082196960760735, 2.24123475052888654306924849141, 3.14610368748903989360520842296, 4.05829933450750100228103494494, 5.05689275118751751026067913563, 5.57395986418026934343744725035, 6.76541088176346544800293683128, 7.41659548121123750374721641780, 8.301741840946682430188224384520, 9.210375907212062813786111151244