L(s) = 1 | + (0.618 + 1.61i)3-s + i·5-s + 4.20i·7-s + (−2.23 + 2.00i)9-s − 11-s + 1.36·13-s + (−1.61 + 0.618i)15-s − 2.20i·17-s + 1.62i·19-s + (−6.80 + 2.60i)21-s − 5.20·23-s − 25-s + (−4.61 − 2.38i)27-s + 0.371i·29-s + 7.20i·31-s + ⋯ |
L(s) = 1 | + (0.356 + 0.934i)3-s + 0.447i·5-s + 1.59i·7-s + (−0.745 + 0.666i)9-s − 0.301·11-s + 0.378·13-s + (−0.417 + 0.159i)15-s − 0.535i·17-s + 0.373i·19-s + (−1.48 + 0.567i)21-s − 1.08·23-s − 0.200·25-s + (−0.888 − 0.458i)27-s + 0.0689i·29-s + 1.29i·31-s + ⋯ |
Λ(s)=(=(2640s/2ΓC(s)L(s)(−0.934+0.356i)Λ(2−s)
Λ(s)=(=(2640s/2ΓC(s+1/2)L(s)(−0.934+0.356i)Λ(1−s)
Degree: |
2 |
Conductor: |
2640
= 24⋅3⋅5⋅11
|
Sign: |
−0.934+0.356i
|
Analytic conductor: |
21.0805 |
Root analytic conductor: |
4.59135 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2640(1871,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2640, ( :1/2), −0.934+0.356i)
|
Particular Values
L(1) |
≈ |
1.297558402 |
L(21) |
≈ |
1.297558402 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.618−1.61i)T |
| 5 | 1−iT |
| 11 | 1+T |
good | 7 | 1−4.20iT−7T2 |
| 13 | 1−1.36T+13T2 |
| 17 | 1+2.20iT−17T2 |
| 19 | 1−1.62iT−19T2 |
| 23 | 1+5.20T+23T2 |
| 29 | 1−0.371iT−29T2 |
| 31 | 1−7.20iT−31T2 |
| 37 | 1+0.0213T+37T2 |
| 41 | 1+3.62iT−41T2 |
| 43 | 1−5.47iT−43T2 |
| 47 | 1−3.96T+47T2 |
| 53 | 1+0.0345iT−53T2 |
| 59 | 1−2.43T+59T2 |
| 61 | 1+0.798T+61T2 |
| 67 | 1+8.41iT−67T2 |
| 71 | 1−11.6T+71T2 |
| 73 | 1−4.57T+73T2 |
| 79 | 1−1.95iT−79T2 |
| 83 | 1+6.57T+83T2 |
| 89 | 1−10.6iT−89T2 |
| 97 | 1+18.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.399749696832010123949895557494, −8.454098414017025227629159899812, −8.176110793372239986039668532070, −6.98063256772178150234811498635, −5.92945768685158629474068981846, −5.47741249186811278595295212878, −4.59453335869804399976208175469, −3.53249291214319116741784186037, −2.79206195586334672533755020431, −2.00252856434794041419028358406,
0.39821122029245242620122152421, 1.35651307412744657691515809676, 2.42769896921142298007178416703, 3.71019333077412949615137409747, 4.20059428634516804902437175527, 5.44100717620530208951935486923, 6.31109266491811245901861150589, 6.99607150973478455939218304075, 7.80857998645194361632358071123, 8.135886911258754920520668684767