Properties

Label 2-2640-12.11-c1-0-14
Degree $2$
Conductor $2640$
Sign $-0.934 + 0.356i$
Analytic cond. $21.0805$
Root an. cond. $4.59135$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.618 + 1.61i)3-s + i·5-s + 4.20i·7-s + (−2.23 + 2.00i)9-s − 11-s + 1.36·13-s + (−1.61 + 0.618i)15-s − 2.20i·17-s + 1.62i·19-s + (−6.80 + 2.60i)21-s − 5.20·23-s − 25-s + (−4.61 − 2.38i)27-s + 0.371i·29-s + 7.20i·31-s + ⋯
L(s)  = 1  + (0.356 + 0.934i)3-s + 0.447i·5-s + 1.59i·7-s + (−0.745 + 0.666i)9-s − 0.301·11-s + 0.378·13-s + (−0.417 + 0.159i)15-s − 0.535i·17-s + 0.373i·19-s + (−1.48 + 0.567i)21-s − 1.08·23-s − 0.200·25-s + (−0.888 − 0.458i)27-s + 0.0689i·29-s + 1.29i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.934 + 0.356i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.934 + 0.356i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2640\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 11\)
Sign: $-0.934 + 0.356i$
Analytic conductor: \(21.0805\)
Root analytic conductor: \(4.59135\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2640} (1871, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2640,\ (\ :1/2),\ -0.934 + 0.356i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.297558402\)
\(L(\frac12)\) \(\approx\) \(1.297558402\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-0.618 - 1.61i)T \)
5 \( 1 - iT \)
11 \( 1 + T \)
good7 \( 1 - 4.20iT - 7T^{2} \)
13 \( 1 - 1.36T + 13T^{2} \)
17 \( 1 + 2.20iT - 17T^{2} \)
19 \( 1 - 1.62iT - 19T^{2} \)
23 \( 1 + 5.20T + 23T^{2} \)
29 \( 1 - 0.371iT - 29T^{2} \)
31 \( 1 - 7.20iT - 31T^{2} \)
37 \( 1 + 0.0213T + 37T^{2} \)
41 \( 1 + 3.62iT - 41T^{2} \)
43 \( 1 - 5.47iT - 43T^{2} \)
47 \( 1 - 3.96T + 47T^{2} \)
53 \( 1 + 0.0345iT - 53T^{2} \)
59 \( 1 - 2.43T + 59T^{2} \)
61 \( 1 + 0.798T + 61T^{2} \)
67 \( 1 + 8.41iT - 67T^{2} \)
71 \( 1 - 11.6T + 71T^{2} \)
73 \( 1 - 4.57T + 73T^{2} \)
79 \( 1 - 1.95iT - 79T^{2} \)
83 \( 1 + 6.57T + 83T^{2} \)
89 \( 1 - 10.6iT - 89T^{2} \)
97 \( 1 + 18.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.399749696832010123949895557494, −8.454098414017025227629159899812, −8.176110793372239986039668532070, −6.98063256772178150234811498635, −5.92945768685158629474068981846, −5.47741249186811278595295212878, −4.59453335869804399976208175469, −3.53249291214319116741784186037, −2.79206195586334672533755020431, −2.00252856434794041419028358406, 0.39821122029245242620122152421, 1.35651307412744657691515809676, 2.42769896921142298007178416703, 3.71019333077412949615137409747, 4.20059428634516804902437175527, 5.44100717620530208951935486923, 6.31109266491811245901861150589, 6.99607150973478455939218304075, 7.80857998645194361632358071123, 8.135886911258754920520668684767

Graph of the $Z$-function along the critical line