L(s) = 1 | + (0.277 − 0.347i)2-s + (0.178 + 0.781i)4-s + (−0.900 − 0.433i)5-s + (−0.623 − 0.781i)7-s + (0.722 + 0.347i)8-s + (0.623 + 0.781i)9-s + (−0.400 + 0.193i)10-s + (0.623 − 0.781i)11-s + (−0.777 + 0.974i)13-s − 0.445·14-s + (−0.400 + 0.193i)16-s + (−0.400 + 1.75i)17-s + 0.445·18-s + (0.178 − 0.781i)20-s + (−0.0990 − 0.433i)22-s + ⋯ |
L(s) = 1 | + (0.277 − 0.347i)2-s + (0.178 + 0.781i)4-s + (−0.900 − 0.433i)5-s + (−0.623 − 0.781i)7-s + (0.722 + 0.347i)8-s + (0.623 + 0.781i)9-s + (−0.400 + 0.193i)10-s + (0.623 − 0.781i)11-s + (−0.777 + 0.974i)13-s − 0.445·14-s + (−0.400 + 0.193i)16-s + (−0.400 + 1.75i)17-s + 0.445·18-s + (0.178 − 0.781i)20-s + (−0.0990 − 0.433i)22-s + ⋯ |
Λ(s)=(=(2695s/2ΓC(s)L(s)(0.718−0.695i)Λ(1−s)
Λ(s)=(=(2695s/2ΓC(s)L(s)(0.718−0.695i)Λ(1−s)
Degree: |
2 |
Conductor: |
2695
= 5⋅72⋅11
|
Sign: |
0.718−0.695i
|
Analytic conductor: |
1.34498 |
Root analytic conductor: |
1.15973 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2695(2199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2695, ( :0), 0.718−0.695i)
|
Particular Values
L(21) |
≈ |
1.175869060 |
L(21) |
≈ |
1.175869060 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.900+0.433i)T |
| 7 | 1+(0.623+0.781i)T |
| 11 | 1+(−0.623+0.781i)T |
good | 2 | 1+(−0.277+0.347i)T+(−0.222−0.974i)T2 |
| 3 | 1+(−0.623−0.781i)T2 |
| 13 | 1+(0.777−0.974i)T+(−0.222−0.974i)T2 |
| 17 | 1+(0.400−1.75i)T+(−0.900−0.433i)T2 |
| 19 | 1−T2 |
| 23 | 1+(0.900−0.433i)T2 |
| 29 | 1+(0.900+0.433i)T2 |
| 31 | 1−2T+T2 |
| 37 | 1+(0.900+0.433i)T2 |
| 41 | 1+(−0.623−0.781i)T2 |
| 43 | 1+(−1.12+0.541i)T+(0.623−0.781i)T2 |
| 47 | 1+(0.222+0.974i)T2 |
| 53 | 1+(0.900−0.433i)T2 |
| 59 | 1+(1.12−0.541i)T+(0.623−0.781i)T2 |
| 61 | 1+(0.900+0.433i)T2 |
| 67 | 1−T2 |
| 71 | 1+(−0.0990−0.433i)T+(−0.900+0.433i)T2 |
| 73 | 1+(−1.12−1.40i)T+(−0.222+0.974i)T2 |
| 79 | 1−T2 |
| 83 | 1+(1.24+1.56i)T+(−0.222+0.974i)T2 |
| 89 | 1+(−0.777−0.974i)T+(−0.222+0.974i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.927793766886312778189398033560, −8.285603827729393490434546711148, −7.63244985937952854486061467215, −6.96225857761534994001739993773, −6.24797865305195989263023827064, −4.76028654655301021609149678954, −4.15054059571389306922587230181, −3.77767644430200124063903982883, −2.63470544106479380627898913012, −1.40198919508518554901468866461,
0.75108509298949270153101790115, 2.41650450500442904162714123508, 3.21064316013800316981377161928, 4.43964978767609485227714749085, 4.89345220088770286613774120412, 6.02837591343826006609039134046, 6.70737277894111431551110092448, 7.16067552873967790007950905887, 7.931372513926666884041723509223, 9.184120293091039907927906607076