L(s) = 1 | + (0.277 − 0.347i)2-s + (0.178 + 0.781i)4-s + (−0.900 − 0.433i)5-s + (−0.623 − 0.781i)7-s + (0.722 + 0.347i)8-s + (0.623 + 0.781i)9-s + (−0.400 + 0.193i)10-s + (0.623 − 0.781i)11-s + (−0.777 + 0.974i)13-s − 0.445·14-s + (−0.400 + 0.193i)16-s + (−0.400 + 1.75i)17-s + 0.445·18-s + (0.178 − 0.781i)20-s + (−0.0990 − 0.433i)22-s + ⋯ |
L(s) = 1 | + (0.277 − 0.347i)2-s + (0.178 + 0.781i)4-s + (−0.900 − 0.433i)5-s + (−0.623 − 0.781i)7-s + (0.722 + 0.347i)8-s + (0.623 + 0.781i)9-s + (−0.400 + 0.193i)10-s + (0.623 − 0.781i)11-s + (−0.777 + 0.974i)13-s − 0.445·14-s + (−0.400 + 0.193i)16-s + (−0.400 + 1.75i)17-s + 0.445·18-s + (0.178 − 0.781i)20-s + (−0.0990 − 0.433i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.718 - 0.695i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.718 - 0.695i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.175869060\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.175869060\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.900 + 0.433i)T \) |
| 7 | \( 1 + (0.623 + 0.781i)T \) |
| 11 | \( 1 + (-0.623 + 0.781i)T \) |
good | 2 | \( 1 + (-0.277 + 0.347i)T + (-0.222 - 0.974i)T^{2} \) |
| 3 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 13 | \( 1 + (0.777 - 0.974i)T + (-0.222 - 0.974i)T^{2} \) |
| 17 | \( 1 + (0.400 - 1.75i)T + (-0.900 - 0.433i)T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 29 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 31 | \( 1 - 2T + T^{2} \) |
| 37 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 41 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 43 | \( 1 + (-1.12 + 0.541i)T + (0.623 - 0.781i)T^{2} \) |
| 47 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 53 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 59 | \( 1 + (1.12 - 0.541i)T + (0.623 - 0.781i)T^{2} \) |
| 61 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-0.0990 - 0.433i)T + (-0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (-1.12 - 1.40i)T + (-0.222 + 0.974i)T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + (1.24 + 1.56i)T + (-0.222 + 0.974i)T^{2} \) |
| 89 | \( 1 + (-0.777 - 0.974i)T + (-0.222 + 0.974i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.927793766886312778189398033560, −8.285603827729393490434546711148, −7.63244985937952854486061467215, −6.96225857761534994001739993773, −6.24797865305195989263023827064, −4.76028654655301021609149678954, −4.15054059571389306922587230181, −3.77767644430200124063903982883, −2.63470544106479380627898913012, −1.40198919508518554901468866461,
0.75108509298949270153101790115, 2.41650450500442904162714123508, 3.21064316013800316981377161928, 4.43964978767609485227714749085, 4.89345220088770286613774120412, 6.02837591343826006609039134046, 6.70737277894111431551110092448, 7.16067552873967790007950905887, 7.931372513926666884041723509223, 9.184120293091039907927906607076