Properties

Label 2-275-5.4-c1-0-1
Degree $2$
Conductor $275$
Sign $-0.894 + 0.447i$
Analytic cond. $2.19588$
Root an. cond. $1.48185$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.30i·2-s + 1.30i·3-s − 3.30·4-s − 3·6-s + 4.30i·7-s − 3.00i·8-s + 1.30·9-s − 11-s − 4.30i·12-s − 5i·13-s − 9.90·14-s + 0.302·16-s − 3.90i·17-s + 3.00i·18-s + 19-s + ⋯
L(s)  = 1  + 1.62i·2-s + 0.752i·3-s − 1.65·4-s − 1.22·6-s + 1.62i·7-s − 1.06i·8-s + 0.434·9-s − 0.301·11-s − 1.24i·12-s − 1.38i·13-s − 2.64·14-s + 0.0756·16-s − 0.947i·17-s + 0.707i·18-s + 0.229·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(275\)    =    \(5^{2} \cdot 11\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(2.19588\)
Root analytic conductor: \(1.48185\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{275} (199, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 275,\ (\ :1/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.264232 - 1.11930i\)
\(L(\frac12)\) \(\approx\) \(0.264232 - 1.11930i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
11 \( 1 + T \)
good2 \( 1 - 2.30iT - 2T^{2} \)
3 \( 1 - 1.30iT - 3T^{2} \)
7 \( 1 - 4.30iT - 7T^{2} \)
13 \( 1 + 5iT - 13T^{2} \)
17 \( 1 + 3.90iT - 17T^{2} \)
19 \( 1 - T + 19T^{2} \)
23 \( 1 - 3.69iT - 23T^{2} \)
29 \( 1 - 9.90T + 29T^{2} \)
31 \( 1 + 4.21T + 31T^{2} \)
37 \( 1 - 9.60iT - 37T^{2} \)
41 \( 1 - 1.60T + 41T^{2} \)
43 \( 1 - 7.21iT - 43T^{2} \)
47 \( 1 + 3iT - 47T^{2} \)
53 \( 1 + 2.30iT - 53T^{2} \)
59 \( 1 + 0.211T + 59T^{2} \)
61 \( 1 - 2.90T + 61T^{2} \)
67 \( 1 + 4iT - 67T^{2} \)
71 \( 1 - 4.60T + 71T^{2} \)
73 \( 1 + 2.90iT - 73T^{2} \)
79 \( 1 - 0.0916T + 79T^{2} \)
83 \( 1 + 14.5iT - 83T^{2} \)
89 \( 1 + 5.30T + 89T^{2} \)
97 \( 1 - 11.6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.63238003338087815578628569761, −11.53923737131970850432248613390, −10.13341406256795812819042681010, −9.325478750161666109994915667218, −8.458271152466733221851348683016, −7.61899158499297047910126358421, −6.37652644928954917043497408833, −5.34985633576905330540675383112, −4.86749430750722988608237498817, −3.00248534429559080338269995500, 0.962669778807227584249628827249, 2.12667899427159159715711558370, 3.83197674752167377977467098631, 4.48061131817610434535676269095, 6.59836625902856050038281082045, 7.39720107290560321053135129321, 8.692065926056758252322454024284, 9.919407677304966816867197593895, 10.52701962670514038614560598389, 11.28844918856147401305385668142

Graph of the $Z$-function along the critical line