L(s) = 1 | + 4.72i·2-s + 8.29i·3-s − 14.2·4-s − 39.1·6-s + 5.48i·7-s − 29.6i·8-s − 41.8·9-s − 11·11-s − 118. i·12-s − 84.9i·13-s − 25.8·14-s + 25.8·16-s + 119. i·17-s − 197. i·18-s + 54.4·19-s + ⋯ |
L(s) = 1 | + 1.66i·2-s + 1.59i·3-s − 1.78·4-s − 2.66·6-s + 0.296i·7-s − 1.31i·8-s − 1.54·9-s − 0.301·11-s − 2.85i·12-s − 1.81i·13-s − 0.494·14-s + 0.403·16-s + 1.70i·17-s − 2.58i·18-s + 0.657·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 275 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.6759077920\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6759077920\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 + 11T \) |
good | 2 | \( 1 - 4.72iT - 8T^{2} \) |
| 3 | \( 1 - 8.29iT - 27T^{2} \) |
| 7 | \( 1 - 5.48iT - 343T^{2} \) |
| 13 | \( 1 + 84.9iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 119. iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 54.4T + 6.85e3T^{2} \) |
| 23 | \( 1 + 83.8iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 296.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 18.7T + 2.97e4T^{2} \) |
| 37 | \( 1 - 188. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 209.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 183. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 142. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 610. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 657.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 171.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 116. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 595.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 629. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 935.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 81.2iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 245.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 395. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.57799916908343130269457437814, −10.92842778382003598494885953453, −10.24473706013545104077301983528, −9.257635684984383323043225627305, −8.389401812096744054446755482451, −7.64408028145699804128720535006, −5.99644043402791295616668810242, −5.48366245188070697856531022938, −4.48133110358615184364118860037, −3.29808537536948226357517800564,
0.26039580836544188718862138601, 1.54390704751961995439290636569, 2.36515163695079310186133518764, 3.72768400217465217086850630332, 5.22604095720427103494935853470, 6.86659324522835948518007764776, 7.51686081552272616642726848797, 9.002781477432539888605473244754, 9.617455278794651899312289930511, 11.06713279403074379276289708453