L(s) = 1 | + 4.72i·2-s + 8.29i·3-s − 14.2·4-s − 39.1·6-s + 5.48i·7-s − 29.6i·8-s − 41.8·9-s − 11·11-s − 118. i·12-s − 84.9i·13-s − 25.8·14-s + 25.8·16-s + 119. i·17-s − 197. i·18-s + 54.4·19-s + ⋯ |
L(s) = 1 | + 1.66i·2-s + 1.59i·3-s − 1.78·4-s − 2.66·6-s + 0.296i·7-s − 1.31i·8-s − 1.54·9-s − 0.301·11-s − 2.85i·12-s − 1.81i·13-s − 0.494·14-s + 0.403·16-s + 1.70i·17-s − 2.58i·18-s + 0.657·19-s + ⋯ |
Λ(s)=(=(275s/2ΓC(s)L(s)(0.894+0.447i)Λ(4−s)
Λ(s)=(=(275s/2ΓC(s+3/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
275
= 52⋅11
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
16.2255 |
Root analytic conductor: |
4.02809 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ275(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 275, ( :3/2), 0.894+0.447i)
|
Particular Values
L(2) |
≈ |
0.6759077920 |
L(21) |
≈ |
0.6759077920 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1+11T |
good | 2 | 1−4.72iT−8T2 |
| 3 | 1−8.29iT−27T2 |
| 7 | 1−5.48iT−343T2 |
| 13 | 1+84.9iT−2.19e3T2 |
| 17 | 1−119.iT−4.91e3T2 |
| 19 | 1−54.4T+6.85e3T2 |
| 23 | 1+83.8iT−1.21e4T2 |
| 29 | 1+296.T+2.43e4T2 |
| 31 | 1+18.7T+2.97e4T2 |
| 37 | 1−188.iT−5.06e4T2 |
| 41 | 1+209.T+6.89e4T2 |
| 43 | 1−183.iT−7.95e4T2 |
| 47 | 1−142.iT−1.03e5T2 |
| 53 | 1−610.iT−1.48e5T2 |
| 59 | 1+657.T+2.05e5T2 |
| 61 | 1−171.T+2.26e5T2 |
| 67 | 1−116.iT−3.00e5T2 |
| 71 | 1+595.T+3.57e5T2 |
| 73 | 1+629.iT−3.89e5T2 |
| 79 | 1−935.T+4.93e5T2 |
| 83 | 1+81.2iT−5.71e5T2 |
| 89 | 1−245.T+7.04e5T2 |
| 97 | 1+395.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.57799916908343130269457437814, −10.92842778382003598494885953453, −10.24473706013545104077301983528, −9.257635684984383323043225627305, −8.389401812096744054446755482451, −7.64408028145699804128720535006, −5.99644043402791295616668810242, −5.48366245188070697856531022938, −4.48133110358615184364118860037, −3.29808537536948226357517800564,
0.26039580836544188718862138601, 1.54390704751961995439290636569, 2.36515163695079310186133518764, 3.72768400217465217086850630332, 5.22604095720427103494935853470, 6.86659324522835948518007764776, 7.51686081552272616642726848797, 9.002781477432539888605473244754, 9.617455278794651899312289930511, 11.06713279403074379276289708453