Properties

Label 2-2760-5.4-c1-0-16
Degree $2$
Conductor $2760$
Sign $0.447 - 0.894i$
Analytic cond. $22.0387$
Root an. cond. $4.69454$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s + (−2 − i)5-s − 2i·7-s − 9-s − 4·11-s + (1 − 2i)15-s + 2i·17-s + 4·19-s + 2·21-s + i·23-s + (3 + 4i)25-s i·27-s − 6·29-s − 4·31-s − 4i·33-s + ⋯
L(s)  = 1  + 0.577i·3-s + (−0.894 − 0.447i)5-s − 0.755i·7-s − 0.333·9-s − 1.20·11-s + (0.258 − 0.516i)15-s + 0.485i·17-s + 0.917·19-s + 0.436·21-s + 0.208i·23-s + (0.600 + 0.800i)25-s − 0.192i·27-s − 1.11·29-s − 0.718·31-s − 0.696i·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2760\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 23\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(22.0387\)
Root analytic conductor: \(4.69454\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2760} (2209, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2760,\ (\ :1/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9665471980\)
\(L(\frac12)\) \(\approx\) \(0.9665471980\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
5 \( 1 + (2 + i)T \)
23 \( 1 - iT \)
good7 \( 1 + 2iT - 7T^{2} \)
11 \( 1 + 4T + 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 - 2iT - 17T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 + 6iT - 37T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 + 2iT - 43T^{2} \)
47 \( 1 - 47T^{2} \)
53 \( 1 - 6iT - 53T^{2} \)
59 \( 1 - 14T + 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 - 14iT - 67T^{2} \)
71 \( 1 - 10T + 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 - 16T + 79T^{2} \)
83 \( 1 - 16iT - 83T^{2} \)
89 \( 1 - 8T + 89T^{2} \)
97 \( 1 - 10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.951517201051043144691401280285, −8.083253211482630835481786128587, −7.58842223226212585155607326141, −6.89621811238670327794173401304, −5.44261141396577850219621026985, −5.20824547283843736992777904900, −3.92276071525409519060252635695, −3.72024204209046853019200863999, −2.41484005997367363709808728167, −0.838323004738218513609693579865, 0.42267850469693064444461785914, 2.07105756158970407364213909488, 2.90423488835218237385501728560, 3.67206706567516067521709200961, 4.99536815842966529969700522713, 5.49586936737580319881668136875, 6.55047349675073203641417324449, 7.28142041164241440176422774600, 7.87812857723712230194175876704, 8.453474631533029587853277338188

Graph of the $Z$-function along the critical line