L(s) = 1 | + i·3-s + (−2 − i)5-s − 2i·7-s − 9-s − 4·11-s + (1 − 2i)15-s + 2i·17-s + 4·19-s + 2·21-s + i·23-s + (3 + 4i)25-s − i·27-s − 6·29-s − 4·31-s − 4i·33-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (−0.894 − 0.447i)5-s − 0.755i·7-s − 0.333·9-s − 1.20·11-s + (0.258 − 0.516i)15-s + 0.485i·17-s + 0.917·19-s + 0.436·21-s + 0.208i·23-s + (0.600 + 0.800i)25-s − 0.192i·27-s − 1.11·29-s − 0.718·31-s − 0.696i·33-s + ⋯ |
Λ(s)=(=(2760s/2ΓC(s)L(s)(0.447−0.894i)Λ(2−s)
Λ(s)=(=(2760s/2ΓC(s+1/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2760
= 23⋅3⋅5⋅23
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
22.0387 |
Root analytic conductor: |
4.69454 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2760(2209,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2760, ( :1/2), 0.447−0.894i)
|
Particular Values
L(1) |
≈ |
0.9665471980 |
L(21) |
≈ |
0.9665471980 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−iT |
| 5 | 1+(2+i)T |
| 23 | 1−iT |
good | 7 | 1+2iT−7T2 |
| 11 | 1+4T+11T2 |
| 13 | 1−13T2 |
| 17 | 1−2iT−17T2 |
| 19 | 1−4T+19T2 |
| 29 | 1+6T+29T2 |
| 31 | 1+4T+31T2 |
| 37 | 1+6iT−37T2 |
| 41 | 1+2T+41T2 |
| 43 | 1+2iT−43T2 |
| 47 | 1−47T2 |
| 53 | 1−6iT−53T2 |
| 59 | 1−14T+59T2 |
| 61 | 1−10T+61T2 |
| 67 | 1−14iT−67T2 |
| 71 | 1−10T+71T2 |
| 73 | 1−73T2 |
| 79 | 1−16T+79T2 |
| 83 | 1−16iT−83T2 |
| 89 | 1−8T+89T2 |
| 97 | 1−10iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.951517201051043144691401280285, −8.083253211482630835481786128587, −7.58842223226212585155607326141, −6.89621811238670327794173401304, −5.44261141396577850219621026985, −5.20824547283843736992777904900, −3.92276071525409519060252635695, −3.72024204209046853019200863999, −2.41484005997367363709808728167, −0.838323004738218513609693579865,
0.42267850469693064444461785914, 2.07105756158970407364213909488, 2.90423488835218237385501728560, 3.67206706567516067521709200961, 4.99536815842966529969700522713, 5.49586936737580319881668136875, 6.55047349675073203641417324449, 7.28142041164241440176422774600, 7.87812857723712230194175876704, 8.453474631533029587853277338188