L(s) = 1 | − i·2-s − 4-s + (2.23 − 0.0526i)5-s + 2i·7-s + i·8-s + (−0.0526 − 2.23i)10-s + 0.470·11-s − 6.47i·13-s + 2·14-s + 16-s − 7.04i·17-s + 7.04·19-s + (−2.23 + 0.0526i)20-s − 0.470i·22-s + 6.94i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + (0.999 − 0.0235i)5-s + 0.755i·7-s + 0.353i·8-s + (−0.0166 − 0.706i)10-s + 0.141·11-s − 1.79i·13-s + 0.534·14-s + 0.250·16-s − 1.70i·17-s + 1.61·19-s + (−0.499 + 0.0117i)20-s − 0.100i·22-s + 1.44i·23-s + ⋯ |
Λ(s)=(=(2790s/2ΓC(s)L(s)(0.0235+0.999i)Λ(2−s)
Λ(s)=(=(2790s/2ΓC(s+1/2)L(s)(0.0235+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
2790
= 2⋅32⋅5⋅31
|
Sign: |
0.0235+0.999i
|
Analytic conductor: |
22.2782 |
Root analytic conductor: |
4.71998 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2790(559,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2790, ( :1/2), 0.0235+0.999i)
|
Particular Values
L(1) |
≈ |
2.106640124 |
L(21) |
≈ |
2.106640124 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1 |
| 5 | 1+(−2.23+0.0526i)T |
| 31 | 1+T |
good | 7 | 1−2iT−7T2 |
| 11 | 1−0.470T+11T2 |
| 13 | 1+6.47iT−13T2 |
| 17 | 1+7.04iT−17T2 |
| 19 | 1−7.04T+19T2 |
| 23 | 1−6.94iT−23T2 |
| 29 | 1+6.94T+29T2 |
| 37 | 1+1.78iT−37T2 |
| 41 | 1+2T+41T2 |
| 43 | 1−0.210iT−43T2 |
| 47 | 1−7.04iT−47T2 |
| 53 | 1+3.15iT−53T2 |
| 59 | 1+7.15T+59T2 |
| 61 | 1−11.2T+61T2 |
| 67 | 1+8.26iT−67T2 |
| 71 | 1+0.260T+71T2 |
| 73 | 1+11.8iT−73T2 |
| 79 | 1−1.89T+79T2 |
| 83 | 1+11.7iT−83T2 |
| 89 | 1−12.0T+89T2 |
| 97 | 1+3.52iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.050571595616411472124151095253, −7.81849163980282133141721908362, −7.32447665526712799931346977387, −5.96807425500609589463371179240, −5.37326059016530776534817297812, −5.03222681457935827246980558803, −3.35340912534452124701244545190, −2.94367296023099557841837068034, −1.89776106493156159663114676105, −0.75792939333163638015589463304,
1.21612246439137932815143577702, 2.16351428838903231664165113571, 3.65404957519421756327404047465, 4.30609868242119966551790822875, 5.26765270771681035386536696096, 6.04463519627878470491845642003, 6.76132400941566487411732425576, 7.21289214385532651497717921011, 8.285494449632933689188766654107, 8.964770598895627632474784165002