L(s) = 1 | − i·2-s − 4-s + (2.23 − 0.0526i)5-s + 2i·7-s + i·8-s + (−0.0526 − 2.23i)10-s + 0.470·11-s − 6.47i·13-s + 2·14-s + 16-s − 7.04i·17-s + 7.04·19-s + (−2.23 + 0.0526i)20-s − 0.470i·22-s + 6.94i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + (0.999 − 0.0235i)5-s + 0.755i·7-s + 0.353i·8-s + (−0.0166 − 0.706i)10-s + 0.141·11-s − 1.79i·13-s + 0.534·14-s + 0.250·16-s − 1.70i·17-s + 1.61·19-s + (−0.499 + 0.0117i)20-s − 0.100i·22-s + 1.44i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2790 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0235 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2790 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0235 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.106640124\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.106640124\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.23 + 0.0526i)T \) |
| 31 | \( 1 + T \) |
good | 7 | \( 1 - 2iT - 7T^{2} \) |
| 11 | \( 1 - 0.470T + 11T^{2} \) |
| 13 | \( 1 + 6.47iT - 13T^{2} \) |
| 17 | \( 1 + 7.04iT - 17T^{2} \) |
| 19 | \( 1 - 7.04T + 19T^{2} \) |
| 23 | \( 1 - 6.94iT - 23T^{2} \) |
| 29 | \( 1 + 6.94T + 29T^{2} \) |
| 37 | \( 1 + 1.78iT - 37T^{2} \) |
| 41 | \( 1 + 2T + 41T^{2} \) |
| 43 | \( 1 - 0.210iT - 43T^{2} \) |
| 47 | \( 1 - 7.04iT - 47T^{2} \) |
| 53 | \( 1 + 3.15iT - 53T^{2} \) |
| 59 | \( 1 + 7.15T + 59T^{2} \) |
| 61 | \( 1 - 11.2T + 61T^{2} \) |
| 67 | \( 1 + 8.26iT - 67T^{2} \) |
| 71 | \( 1 + 0.260T + 71T^{2} \) |
| 73 | \( 1 + 11.8iT - 73T^{2} \) |
| 79 | \( 1 - 1.89T + 79T^{2} \) |
| 83 | \( 1 + 11.7iT - 83T^{2} \) |
| 89 | \( 1 - 12.0T + 89T^{2} \) |
| 97 | \( 1 + 3.52iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.050571595616411472124151095253, −7.81849163980282133141721908362, −7.32447665526712799931346977387, −5.96807425500609589463371179240, −5.37326059016530776534817297812, −5.03222681457935827246980558803, −3.35340912534452124701244545190, −2.94367296023099557841837068034, −1.89776106493156159663114676105, −0.75792939333163638015589463304,
1.21612246439137932815143577702, 2.16351428838903231664165113571, 3.65404957519421756327404047465, 4.30609868242119966551790822875, 5.26765270771681035386536696096, 6.04463519627878470491845642003, 6.76132400941566487411732425576, 7.21289214385532651497717921011, 8.285494449632933689188766654107, 8.964770598895627632474784165002