L(s) = 1 | + (−0.797 + 0.603i)3-s + (−0.0249 − 0.999i)4-s + (0.698 − 0.715i)7-s + (0.270 − 0.962i)9-s + (0.623 + 0.781i)12-s + (0.907 − 0.0908i)13-s + (−0.998 + 0.0498i)16-s + (0.0747 + 0.997i)19-s + (−0.124 + 0.992i)21-s + (0.270 − 0.962i)25-s + (0.365 + 0.930i)27-s + (−0.733 − 0.680i)28-s + (0.661 − 1.14i)31-s + (−0.969 − 0.246i)36-s + (0.629 − 0.0949i)37-s + ⋯ |
L(s) = 1 | + (−0.797 + 0.603i)3-s + (−0.0249 − 0.999i)4-s + (0.698 − 0.715i)7-s + (0.270 − 0.962i)9-s + (0.623 + 0.781i)12-s + (0.907 − 0.0908i)13-s + (−0.998 + 0.0498i)16-s + (0.0747 + 0.997i)19-s + (−0.124 + 0.992i)21-s + (0.270 − 0.962i)25-s + (0.365 + 0.930i)27-s + (−0.733 − 0.680i)28-s + (0.661 − 1.14i)31-s + (−0.969 − 0.246i)36-s + (0.629 − 0.0949i)37-s + ⋯ |
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.457+0.889i)Λ(1−s)
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.457+0.889i)Λ(1−s)
Degree: |
2 |
Conductor: |
2793
= 3⋅72⋅19
|
Sign: |
0.457+0.889i
|
Analytic conductor: |
1.39388 |
Root analytic conductor: |
1.18063 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2793(1346,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2793, ( :0), 0.457+0.889i)
|
Particular Values
L(21) |
≈ |
0.9997387459 |
L(21) |
≈ |
0.9997387459 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.797−0.603i)T |
| 7 | 1+(−0.698+0.715i)T |
| 19 | 1+(−0.0747−0.997i)T |
good | 2 | 1+(0.0249+0.999i)T2 |
| 5 | 1+(−0.270+0.962i)T2 |
| 11 | 1+(−0.623+0.781i)T2 |
| 13 | 1+(−0.907+0.0908i)T+(0.980−0.198i)T2 |
| 17 | 1+(−0.542+0.840i)T2 |
| 23 | 1+(−0.456+0.889i)T2 |
| 29 | 1+(−0.921−0.388i)T2 |
| 31 | 1+(−0.661+1.14i)T+(−0.5−0.866i)T2 |
| 37 | 1+(−0.629+0.0949i)T+(0.955−0.294i)T2 |
| 41 | 1+(0.969−0.246i)T2 |
| 43 | 1+(1.98−0.0991i)T+(0.995−0.0995i)T2 |
| 47 | 1+(0.318−0.947i)T2 |
| 53 | 1+(0.998−0.0498i)T2 |
| 59 | 1+(−0.995+0.0995i)T2 |
| 61 | 1+(−0.421−1.25i)T+(−0.797+0.603i)T2 |
| 67 | 1+(0.857+0.312i)T+(0.766+0.642i)T2 |
| 71 | 1+(0.124−0.992i)T2 |
| 73 | 1+(0.806+1.78i)T+(−0.661+0.749i)T2 |
| 79 | 1+(−0.305+1.72i)T+(−0.939−0.342i)T2 |
| 83 | 1+(0.988−0.149i)T2 |
| 89 | 1+(−0.878+0.478i)T2 |
| 97 | 1+(−1.26−1.06i)T+(0.173+0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.954208257229999548377751228109, −8.182363609322613870370279902890, −7.20872902241092365603312966982, −6.17253316403591295378735098556, −5.96578199609357901340766801327, −4.84273148212416096469176815187, −4.41162624280751203948951118893, −3.45524475264355129522969377385, −1.80043595287506752746670873125, −0.798792268970554864845252564369,
1.37743466715932231421529577595, 2.46188600174208019343550371977, 3.43582733237908922080763361917, 4.64863265372302125525436254570, 5.16157476158867050173275997025, 6.17810559761934592645806407984, 6.88747010663576540343950947427, 7.54592098685592540581246966490, 8.489299611652349598082946508204, 8.671995038444861525846502440164