Properties

Label 2-2793-2793.773-c0-0-0
Degree $2$
Conductor $2793$
Sign $0.721 - 0.692i$
Analytic cond. $1.39388$
Root an. cond. $1.18063$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.980 + 0.198i)3-s + (0.969 + 0.246i)4-s + (−0.124 + 0.992i)7-s + (0.921 + 0.388i)9-s + (0.900 + 0.433i)12-s + (0.0270 + 0.0418i)13-s + (0.878 + 0.478i)16-s + (−0.733 − 0.680i)19-s + (−0.318 + 0.947i)21-s + (−0.921 − 0.388i)25-s + (0.826 + 0.563i)27-s + (−0.365 + 0.930i)28-s + (−0.583 − 1.01i)31-s + (0.797 + 0.603i)36-s + (−0.198 + 0.0148i)37-s + ⋯
L(s)  = 1  + (0.980 + 0.198i)3-s + (0.969 + 0.246i)4-s + (−0.124 + 0.992i)7-s + (0.921 + 0.388i)9-s + (0.900 + 0.433i)12-s + (0.0270 + 0.0418i)13-s + (0.878 + 0.478i)16-s + (−0.733 − 0.680i)19-s + (−0.318 + 0.947i)21-s + (−0.921 − 0.388i)25-s + (0.826 + 0.563i)27-s + (−0.365 + 0.930i)28-s + (−0.583 − 1.01i)31-s + (0.797 + 0.603i)36-s + (−0.198 + 0.0148i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.721 - 0.692i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.721 - 0.692i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2793\)    =    \(3 \cdot 7^{2} \cdot 19\)
Sign: $0.721 - 0.692i$
Analytic conductor: \(1.39388\)
Root analytic conductor: \(1.18063\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2793} (773, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2793,\ (\ :0),\ 0.721 - 0.692i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.136198020\)
\(L(\frac12)\) \(\approx\) \(2.136198020\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.980 - 0.198i)T \)
7 \( 1 + (0.124 - 0.992i)T \)
19 \( 1 + (0.733 + 0.680i)T \)
good2 \( 1 + (-0.969 - 0.246i)T^{2} \)
5 \( 1 + (0.921 + 0.388i)T^{2} \)
11 \( 1 + (0.900 - 0.433i)T^{2} \)
13 \( 1 + (-0.0270 - 0.0418i)T + (-0.411 + 0.911i)T^{2} \)
17 \( 1 + (-0.853 - 0.521i)T^{2} \)
23 \( 1 + (0.0249 + 0.999i)T^{2} \)
29 \( 1 + (-0.661 + 0.749i)T^{2} \)
31 \( 1 + (0.583 + 1.01i)T + (-0.5 + 0.866i)T^{2} \)
37 \( 1 + (0.198 - 0.0148i)T + (0.988 - 0.149i)T^{2} \)
41 \( 1 + (0.797 - 0.603i)T^{2} \)
43 \( 1 + (0.952 + 0.518i)T + (0.542 + 0.840i)T^{2} \)
47 \( 1 + (0.995 - 0.0995i)T^{2} \)
53 \( 1 + (0.878 + 0.478i)T^{2} \)
59 \( 1 + (-0.542 - 0.840i)T^{2} \)
61 \( 1 + (-0.161 + 1.61i)T + (-0.980 - 0.198i)T^{2} \)
67 \( 1 + (-0.683 - 1.87i)T + (-0.766 + 0.642i)T^{2} \)
71 \( 1 + (-0.318 + 0.947i)T^{2} \)
73 \( 1 + (1.62 - 0.831i)T + (0.583 - 0.811i)T^{2} \)
79 \( 1 + (-1.89 + 0.334i)T + (0.939 - 0.342i)T^{2} \)
83 \( 1 + (0.0747 + 0.997i)T^{2} \)
89 \( 1 + (-0.270 + 0.962i)T^{2} \)
97 \( 1 + (-1.46 + 1.22i)T + (0.173 - 0.984i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.945116770325284408150741606861, −8.344196115479831601393685084591, −7.68872346967118405512785456994, −6.87010364498684265746770859845, −6.16521814422477932240312307893, −5.24526441413688224950502446118, −4.12596266396609724233607593472, −3.28454874187309054005428458369, −2.40467007830147782828459560264, −1.89057465189217546754556394330, 1.35121036067675197241030400368, 2.13334786918665151624757216589, 3.27324632059321394074757259632, 3.82097613557405563968142039331, 4.92667685907402372843697986374, 6.13313061965022522637251821418, 6.72695355751455940733478145053, 7.49270199154642962549872523256, 7.916925399434914696134073967179, 8.830702761735940483395094339541

Graph of the $Z$-function along the critical line