Properties

Label 2-2880-1.1-c1-0-4
Degree $2$
Conductor $2880$
Sign $1$
Analytic cond. $22.9969$
Root an. cond. $4.79550$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s − 4·11-s + 6·13-s − 2·17-s − 8·19-s + 6·23-s + 25-s − 2·29-s + 4·31-s + 2·35-s − 2·37-s + 10·41-s + 2·43-s + 2·47-s − 3·49-s + 2·53-s + 4·55-s − 2·61-s − 6·65-s + 6·67-s + 12·71-s + 10·73-s + 8·77-s − 8·79-s − 10·83-s + 2·85-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s − 1.20·11-s + 1.66·13-s − 0.485·17-s − 1.83·19-s + 1.25·23-s + 1/5·25-s − 0.371·29-s + 0.718·31-s + 0.338·35-s − 0.328·37-s + 1.56·41-s + 0.304·43-s + 0.291·47-s − 3/7·49-s + 0.274·53-s + 0.539·55-s − 0.256·61-s − 0.744·65-s + 0.733·67-s + 1.42·71-s + 1.17·73-s + 0.911·77-s − 0.900·79-s − 1.09·83-s + 0.216·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2880\)    =    \(2^{6} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(22.9969\)
Root analytic conductor: \(4.79550\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2880,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.229461141\)
\(L(\frac12)\) \(\approx\) \(1.229461141\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 6 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 10 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.637588809241276031769349149702, −8.198425204155087916449678449322, −7.22523714288498578586167895314, −6.43994745928577778528949953628, −5.87904549724101637062073659041, −4.79631332498560161768109396865, −3.97804609056765892400553483994, −3.15160418737570888427061443506, −2.21397268061529340725377684972, −0.66259622561650473080382665441, 0.66259622561650473080382665441, 2.21397268061529340725377684972, 3.15160418737570888427061443506, 3.97804609056765892400553483994, 4.79631332498560161768109396865, 5.87904549724101637062073659041, 6.43994745928577778528949953628, 7.22523714288498578586167895314, 8.198425204155087916449678449322, 8.637588809241276031769349149702

Graph of the $Z$-function along the critical line