L(s) = 1 | + (2 + 3.46i)2-s + (4.5 − 7.79i)3-s + (−7.99 + 13.8i)4-s + (13 + 22.5i)5-s + 36·6-s − 63.9·8-s + (−40.5 − 70.1i)9-s + (−51.9 + 90.0i)10-s + (−332 + 575. i)11-s + (72 + 124. i)12-s − 318·13-s + 234·15-s + (−128 − 221. i)16-s + (791 − 1.37e3i)17-s + (162 − 280. i)18-s + (118 + 204. i)19-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.232 + 0.402i)5-s + 0.408·6-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.164 + 0.284i)10-s + (−0.827 + 1.43i)11-s + (0.144 + 0.249i)12-s − 0.521·13-s + 0.268·15-s + (−0.125 − 0.216i)16-s + (0.663 − 1.14i)17-s + (0.117 − 0.204i)18-s + (0.0749 + 0.129i)19-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(−0.701+0.712i)Λ(6−s)
Λ(s)=(=(294s/2ΓC(s+5/2)L(s)(−0.701+0.712i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
−0.701+0.712i
|
Analytic conductor: |
47.1528 |
Root analytic conductor: |
6.86679 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 294, ( :5/2), −0.701+0.712i)
|
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2−3.46i)T |
| 3 | 1+(−4.5+7.79i)T |
| 7 | 1 |
good | 5 | 1+(−13−22.5i)T+(−1.56e3+2.70e3i)T2 |
| 11 | 1+(332−575.i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1+318T+3.71e5T2 |
| 17 | 1+(−791+1.37e3i)T+(−7.09e5−1.22e6i)T2 |
| 19 | 1+(−118−204.i)T+(−1.23e6+2.14e6i)T2 |
| 23 | 1+(1.10e3+1.91e3i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1+4.95e3T+2.05e7T2 |
| 31 | 1+(3.56e3−6.17e3i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1+(2.17e3+3.77e3i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1+1.05e4T+1.15e8T2 |
| 43 | 1+8.45e3T+1.47e8T2 |
| 47 | 1+(−2.67e3−4.63e3i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(−1.66e4+2.88e4i)T+(−2.09e8−3.62e8i)T2 |
| 59 | 1+(7.71e3−1.33e4i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(1.83e4+3.18e4i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(2.04e4−3.54e4i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1+9.09e3T+1.80e9T2 |
| 73 | 1+(3.67e4−6.36e4i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(4.47e4+7.74e4i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1−6.42e3T+3.93e9T2 |
| 89 | 1+(6.13e4+1.06e5i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1+2.13e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39141152760035293305931558576, −9.633333957790276435313780215183, −8.424102401585275350381456304763, −7.31588493554219713927533012591, −6.97855858514161837554408929979, −5.56266500442447780979036743548, −4.63493313928673683933317343002, −3.07888643606651900056499376836, −2.01251152983812618917090761397, 0,
1.58307967033365036755482440288, 2.99685912860729848402954950362, 3.89282050406028101637071705149, 5.27843921549101402256145001295, 5.85050155749428893350056930861, 7.66324191946719382054960701838, 8.623177262176663772063503631736, 9.525697903333520092780379414056, 10.44304000470597809147317703080