L(s) = 1 | + (2 + 3.46i)2-s + (4.5 − 7.79i)3-s + (−7.99 + 13.8i)4-s + (13 + 22.5i)5-s + 36·6-s − 63.9·8-s + (−40.5 − 70.1i)9-s + (−51.9 + 90.0i)10-s + (−332 + 575. i)11-s + (72 + 124. i)12-s − 318·13-s + 234·15-s + (−128 − 221. i)16-s + (791 − 1.37e3i)17-s + (162 − 280. i)18-s + (118 + 204. i)19-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.232 + 0.402i)5-s + 0.408·6-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.164 + 0.284i)10-s + (−0.827 + 1.43i)11-s + (0.144 + 0.249i)12-s − 0.521·13-s + 0.268·15-s + (−0.125 − 0.216i)16-s + (0.663 − 1.14i)17-s + (0.117 − 0.204i)18-s + (0.0749 + 0.129i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 + 0.712i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.701 + 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2 - 3.46i)T \) |
| 3 | \( 1 + (-4.5 + 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-13 - 22.5i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (332 - 575. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 + 318T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-791 + 1.37e3i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-118 - 204. i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (1.10e3 + 1.91e3i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 + 4.95e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (3.56e3 - 6.17e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (2.17e3 + 3.77e3i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 + 1.05e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 8.45e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-2.67e3 - 4.63e3i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-1.66e4 + 2.88e4i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (7.71e3 - 1.33e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (1.83e4 + 3.18e4i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (2.04e4 - 3.54e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 + 9.09e3T + 1.80e9T^{2} \) |
| 73 | \( 1 + (3.67e4 - 6.36e4i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (4.47e4 + 7.74e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 - 6.42e3T + 3.93e9T^{2} \) |
| 89 | \( 1 + (6.13e4 + 1.06e5i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 + 2.13e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39141152760035293305931558576, −9.633333957790276435313780215183, −8.424102401585275350381456304763, −7.31588493554219713927533012591, −6.97855858514161837554408929979, −5.56266500442447780979036743548, −4.63493313928673683933317343002, −3.07888643606651900056499376836, −2.01251152983812618917090761397, 0,
1.58307967033365036755482440288, 2.99685912860729848402954950362, 3.89282050406028101637071705149, 5.27843921549101402256145001295, 5.85050155749428893350056930861, 7.66324191946719382054960701838, 8.623177262176663772063503631736, 9.525697903333520092780379414056, 10.44304000470597809147317703080