Properties

Label 2-2960-37.36-c1-0-29
Degree $2$
Conductor $2960$
Sign $0.630 + 0.775i$
Analytic cond. $23.6357$
Root an. cond. $4.86165$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.24·3-s i·5-s − 1.52·7-s + 2.05·9-s − 2.71·11-s − 0.941i·13-s + 2.24i·15-s + 4.83i·17-s − 0.249i·19-s + 3.43·21-s + 0.941i·23-s − 25-s + 2.11·27-s − 0.719i·29-s + 4.02i·31-s + ⋯
L(s)  = 1  − 1.29·3-s − 0.447i·5-s − 0.578·7-s + 0.686·9-s − 0.820·11-s − 0.261i·13-s + 0.580i·15-s + 1.17i·17-s − 0.0571i·19-s + 0.750·21-s + 0.196i·23-s − 0.200·25-s + 0.407·27-s − 0.133i·29-s + 0.723i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.630 + 0.775i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.630 + 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2960\)    =    \(2^{4} \cdot 5 \cdot 37\)
Sign: $0.630 + 0.775i$
Analytic conductor: \(23.6357\)
Root analytic conductor: \(4.86165\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2960} (961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2960,\ (\ :1/2),\ 0.630 + 0.775i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5742151099\)
\(L(\frac12)\) \(\approx\) \(0.5742151099\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + iT \)
37 \( 1 + (4.71 - 3.83i)T \)
good3 \( 1 + 2.24T + 3T^{2} \)
7 \( 1 + 1.52T + 7T^{2} \)
11 \( 1 + 2.71T + 11T^{2} \)
13 \( 1 + 0.941iT - 13T^{2} \)
17 \( 1 - 4.83iT - 17T^{2} \)
19 \( 1 + 0.249iT - 19T^{2} \)
23 \( 1 - 0.941iT - 23T^{2} \)
29 \( 1 + 0.719iT - 29T^{2} \)
31 \( 1 - 4.02iT - 31T^{2} \)
41 \( 1 + 8.27T + 41T^{2} \)
43 \( 1 - 2.71iT - 43T^{2} \)
47 \( 1 - 3.30T + 47T^{2} \)
53 \( 1 - 8.39T + 53T^{2} \)
59 \( 1 + 7.30iT - 59T^{2} \)
61 \( 1 + 6.83iT - 61T^{2} \)
67 \( 1 - 7.68T + 67T^{2} \)
71 \( 1 - 3.05T + 71T^{2} \)
73 \( 1 - 9.11T + 73T^{2} \)
79 \( 1 + 1.75iT - 79T^{2} \)
83 \( 1 + 0.131T + 83T^{2} \)
89 \( 1 - 8.99iT - 89T^{2} \)
97 \( 1 + 16.2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.500884421368223777027874672633, −7.986554229226979325612998265918, −6.80408425073184866672988627962, −6.38173995711418767073951327621, −5.37896271113428932029840588169, −5.14803263583355165294757814999, −4.01567973891259597427615188209, −3.03840911195160497057671030185, −1.66629943853898601097681289229, −0.37488373684976635258889377929, 0.62591051717225682705630857296, 2.26815359008776403317382824981, 3.20093776211645625914491208397, 4.29185264532530439110863735373, 5.28352348266811809265914173274, 5.64477168035966179959375521113, 6.69498763969642364913650373882, 6.99740361210097991327936358735, 7.959173510206461080277541005993, 8.952183310967372196602021890359

Graph of the $Z$-function along the critical line