L(s) = 1 | + (1.39 − 0.221i)3-s + (0.587 + 0.809i)4-s + (0.951 − 0.309i)9-s + (1 + i)12-s + (−0.309 + 0.951i)16-s + (1 − i)23-s + (0.809 + 0.587i)36-s + (−1.39 − 0.221i)37-s + (0.221 + 1.39i)47-s + (−0.221 + 1.39i)48-s + (−0.951 − 0.309i)49-s + (1.26 + 0.642i)53-s + (−0.951 + 0.309i)64-s + (−1 − i)67-s + (1.17 − 1.61i)69-s + ⋯ |
L(s) = 1 | + (1.39 − 0.221i)3-s + (0.587 + 0.809i)4-s + (0.951 − 0.309i)9-s + (1 + i)12-s + (−0.309 + 0.951i)16-s + (1 − i)23-s + (0.809 + 0.587i)36-s + (−1.39 − 0.221i)37-s + (0.221 + 1.39i)47-s + (−0.221 + 1.39i)48-s + (−0.951 − 0.309i)49-s + (1.26 + 0.642i)53-s + (−0.951 + 0.309i)64-s + (−1 − i)67-s + (1.17 − 1.61i)69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.916 - 0.399i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.916 - 0.399i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.270476253\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.270476253\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 3 | \( 1 + (-1.39 + 0.221i)T + (0.951 - 0.309i)T^{2} \) |
| 7 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 13 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 17 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 19 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (-1 + i)T - iT^{2} \) |
| 29 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (1.39 + 0.221i)T + (0.951 + 0.309i)T^{2} \) |
| 41 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (-0.221 - 1.39i)T + (-0.951 + 0.309i)T^{2} \) |
| 53 | \( 1 + (-1.26 - 0.642i)T + (0.587 + 0.809i)T^{2} \) |
| 59 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 + (1 + i)T + iT^{2} \) |
| 71 | \( 1 + (-0.618 + 1.90i)T + (-0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 79 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (-0.587 + 0.809i)T^{2} \) |
| 89 | \( 1 + 2iT - T^{2} \) |
| 97 | \( 1 + (0.642 - 1.26i)T + (-0.587 - 0.809i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.863751765997085951189946704074, −8.179789865753001288666554822871, −7.58934316250327788740053821705, −6.96166825427562101568077041653, −6.20213106743448742448519638402, −4.91492012298908588042011361447, −3.93027754472972759462463572453, −3.16644566711627093041461194584, −2.57821892992734463337175295318, −1.66391820586550627636415745115,
1.40013782946010643756124296527, 2.32098942418055076771016752300, 3.12091427679614576616220705501, 3.92139335555234560804161980405, 5.06842551655783928328380166710, 5.71547438554410451377073818146, 6.89340546997023570581657646605, 7.25389009957670675520643720412, 8.291852635883738424305330469172, 8.819168133081378040171724295896