L(s) = 1 | + (−0.359 + 0.116i)3-s + (1.61 − 2.22i)5-s + (0.904 − 2.48i)7-s + (−2.31 + 1.67i)9-s + (−2.11 − 2.55i)11-s + (1.07 − 0.778i)13-s + (−0.321 + 0.989i)15-s + (2.01 + 1.46i)17-s + (−1.78 − 5.48i)19-s + (−0.0347 + 0.999i)21-s + 5.62·23-s + (−0.795 − 2.44i)25-s + (1.30 − 1.79i)27-s + (6.07 + 1.97i)29-s + (−0.830 − 1.14i)31-s + ⋯ |
L(s) = 1 | + (−0.207 + 0.0674i)3-s + (0.723 − 0.995i)5-s + (0.341 − 0.939i)7-s + (−0.770 + 0.559i)9-s + (−0.638 − 0.769i)11-s + (0.297 − 0.215i)13-s + (−0.0829 + 0.255i)15-s + (0.488 + 0.354i)17-s + (−0.409 − 1.25i)19-s + (−0.00758 + 0.218i)21-s + 1.17·23-s + (−0.159 − 0.489i)25-s + (0.250 − 0.344i)27-s + (1.12 + 0.366i)29-s + (−0.149 − 0.205i)31-s + ⋯ |
Λ(s)=(=(308s/2ΓC(s)L(s)(0.400+0.916i)Λ(2−s)
Λ(s)=(=(308s/2ΓC(s+1/2)L(s)(0.400+0.916i)Λ(1−s)
Degree: |
2 |
Conductor: |
308
= 22⋅7⋅11
|
Sign: |
0.400+0.916i
|
Analytic conductor: |
2.45939 |
Root analytic conductor: |
1.56824 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ308(41,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 308, ( :1/2), 0.400+0.916i)
|
Particular Values
L(1) |
≈ |
1.07430−0.702479i |
L(21) |
≈ |
1.07430−0.702479i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−0.904+2.48i)T |
| 11 | 1+(2.11+2.55i)T |
good | 3 | 1+(0.359−0.116i)T+(2.42−1.76i)T2 |
| 5 | 1+(−1.61+2.22i)T+(−1.54−4.75i)T2 |
| 13 | 1+(−1.07+0.778i)T+(4.01−12.3i)T2 |
| 17 | 1+(−2.01−1.46i)T+(5.25+16.1i)T2 |
| 19 | 1+(1.78+5.48i)T+(−15.3+11.1i)T2 |
| 23 | 1−5.62T+23T2 |
| 29 | 1+(−6.07−1.97i)T+(23.4+17.0i)T2 |
| 31 | 1+(0.830+1.14i)T+(−9.57+29.4i)T2 |
| 37 | 1+(−0.224+0.690i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−1.87−5.78i)T+(−33.1+24.0i)T2 |
| 43 | 1−8.58iT−43T2 |
| 47 | 1+(6.76−2.19i)T+(38.0−27.6i)T2 |
| 53 | 1+(3.60−2.61i)T+(16.3−50.4i)T2 |
| 59 | 1+(6.72+2.18i)T+(47.7+34.6i)T2 |
| 61 | 1+(−7.87−5.72i)T+(18.8+58.0i)T2 |
| 67 | 1+2.85T+67T2 |
| 71 | 1+(−6.22−4.52i)T+(21.9+67.5i)T2 |
| 73 | 1+(−1.51+4.67i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−5.03−6.93i)T+(−24.4+75.1i)T2 |
| 83 | 1+(−9.86−7.16i)T+(25.6+78.9i)T2 |
| 89 | 1−16.4iT−89T2 |
| 97 | 1+(6.62+9.12i)T+(−29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.16707070250958305465498824383, −10.84714193366158875550837957925, −9.652168687835728542100056350112, −8.597066280691429125447755420248, −7.938006145950144096881164575549, −6.48391191360803653372318011950, −5.33903040386580139688862578656, −4.69124331116530929821270890220, −2.91812758209204116462006671122, −1.03347411044576443169492305539,
2.13222321754517821113748917503, 3.21609429145581746316007744316, 5.09174540226769492549504721056, 5.98634026434679871041306636150, 6.81249732776702675227047945059, 8.100258076265280961011100976970, 9.116238331509453795579038462648, 10.10125417427440328655731970534, 10.88629953026208793473996821798, 11.91319039558764072288035629355