L(s) = 1 | + (2.27 − 1.01i)3-s + (−1.34 + 0.285i)5-s + (1.38 − 2.25i)7-s + (2.14 − 2.37i)9-s + (−0.893 − 3.19i)11-s + (0.390 + 1.20i)13-s + (−2.77 + 2.01i)15-s + (4.95 + 5.50i)17-s + (0.562 − 5.35i)19-s + (0.876 − 6.52i)21-s + (3.03 + 5.25i)23-s + (−2.84 + 1.26i)25-s + (0.153 − 0.473i)27-s + (−5.17 + 3.75i)29-s + (−8.06 − 1.71i)31-s + ⋯ |
L(s) = 1 | + (1.31 − 0.584i)3-s + (−0.601 + 0.127i)5-s + (0.524 − 0.851i)7-s + (0.713 − 0.792i)9-s + (−0.269 − 0.963i)11-s + (0.108 + 0.333i)13-s + (−0.715 + 0.519i)15-s + (1.20 + 1.33i)17-s + (0.129 − 1.22i)19-s + (0.191 − 1.42i)21-s + (0.633 + 1.09i)23-s + (−0.568 + 0.252i)25-s + (0.0296 − 0.0911i)27-s + (−0.960 + 0.697i)29-s + (−1.44 − 0.307i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.691 + 0.722i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.691 + 0.722i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.69119 - 0.722601i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.69119 - 0.722601i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-1.38 + 2.25i)T \) |
| 11 | \( 1 + (0.893 + 3.19i)T \) |
good | 3 | \( 1 + (-2.27 + 1.01i)T + (2.00 - 2.22i)T^{2} \) |
| 5 | \( 1 + (1.34 - 0.285i)T + (4.56 - 2.03i)T^{2} \) |
| 13 | \( 1 + (-0.390 - 1.20i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-4.95 - 5.50i)T + (-1.77 + 16.9i)T^{2} \) |
| 19 | \( 1 + (-0.562 + 5.35i)T + (-18.5 - 3.95i)T^{2} \) |
| 23 | \( 1 + (-3.03 - 5.25i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (5.17 - 3.75i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (8.06 + 1.71i)T + (28.3 + 12.6i)T^{2} \) |
| 37 | \( 1 + (-1.63 - 0.726i)T + (24.7 + 27.4i)T^{2} \) |
| 41 | \( 1 + (-1.43 - 1.04i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 10.0T + 43T^{2} \) |
| 47 | \( 1 + (0.357 - 3.40i)T + (-45.9 - 9.77i)T^{2} \) |
| 53 | \( 1 + (4.74 + 1.00i)T + (48.4 + 21.5i)T^{2} \) |
| 59 | \( 1 + (0.400 + 3.81i)T + (-57.7 + 12.2i)T^{2} \) |
| 61 | \( 1 + (2.51 - 0.535i)T + (55.7 - 24.8i)T^{2} \) |
| 67 | \( 1 + (5.64 - 9.76i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (4.44 - 13.6i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-0.168 - 1.60i)T + (-71.4 + 15.1i)T^{2} \) |
| 79 | \( 1 + (-3.17 + 3.52i)T + (-8.25 - 78.5i)T^{2} \) |
| 83 | \( 1 + (-2.36 + 7.26i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + (1.77 + 3.08i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (4.65 + 14.3i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.39286208046946942514592416165, −10.85761695115585580995283066076, −9.432456760349836587470539414632, −8.566263896543259453401379361352, −7.64017158178476980068171091255, −7.30915041699158106618963083173, −5.63991567922704308447296451125, −3.94311530694837622070732356241, −3.18237784192809340337088550950, −1.48128060993082135743883794234,
2.22234913447030950571888938687, 3.38233608666761276234685999969, 4.51281168139217090532406526530, 5.63376900508352586931137347817, 7.59224500151656600220725588305, 7.924732555328403112283083724906, 9.087711453107840999841551624832, 9.641356040396838301135664507148, 10.75155936123944178829120806687, 12.01180548473229510702168523649