L(s) = 1 | + 9.16·3-s − 10.7·5-s + 7·7-s + 57.0·9-s − 11·11-s + 48.7·13-s − 98.2·15-s + 87.5·17-s − 35.4·19-s + 64.1·21-s + 215.·23-s − 10.1·25-s + 275.·27-s − 0.722·29-s + 270.·31-s − 100.·33-s − 75.0·35-s − 27.3·37-s + 447.·39-s − 381.·41-s − 137.·43-s − 611.·45-s − 202.·47-s + 49·49-s + 802.·51-s − 443.·53-s + 117.·55-s + ⋯ |
L(s) = 1 | + 1.76·3-s − 0.958·5-s + 0.377·7-s + 2.11·9-s − 0.301·11-s + 1.04·13-s − 1.69·15-s + 1.24·17-s − 0.428·19-s + 0.666·21-s + 1.95·23-s − 0.0809·25-s + 1.96·27-s − 0.00462·29-s + 1.56·31-s − 0.532·33-s − 0.362·35-s − 0.121·37-s + 1.83·39-s − 1.45·41-s − 0.487·43-s − 2.02·45-s − 0.628·47-s + 0.142·49-s + 2.20·51-s − 1.14·53-s + 0.289·55-s + ⋯ |
Λ(s)=(=(308s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(308s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.261586410 |
L(21) |
≈ |
3.261586410 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−7T |
| 11 | 1+11T |
good | 3 | 1−9.16T+27T2 |
| 5 | 1+10.7T+125T2 |
| 13 | 1−48.7T+2.19e3T2 |
| 17 | 1−87.5T+4.91e3T2 |
| 19 | 1+35.4T+6.85e3T2 |
| 23 | 1−215.T+1.21e4T2 |
| 29 | 1+0.722T+2.43e4T2 |
| 31 | 1−270.T+2.97e4T2 |
| 37 | 1+27.3T+5.06e4T2 |
| 41 | 1+381.T+6.89e4T2 |
| 43 | 1+137.T+7.95e4T2 |
| 47 | 1+202.T+1.03e5T2 |
| 53 | 1+443.T+1.48e5T2 |
| 59 | 1+845.T+2.05e5T2 |
| 61 | 1−539.T+2.26e5T2 |
| 67 | 1+162.T+3.00e5T2 |
| 71 | 1−550.T+3.57e5T2 |
| 73 | 1−52.4T+3.89e5T2 |
| 79 | 1−379.T+4.93e5T2 |
| 83 | 1−47.7T+5.71e5T2 |
| 89 | 1−308.T+7.04e5T2 |
| 97 | 1−93.5T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.22933308702922281383284913452, −10.18412326019096677684076639157, −9.117083252204804305110323292738, −8.217702324866974658776318812029, −7.893132894470447775775084838663, −6.74022801205435713217253405932, −4.86432200548533070772898966671, −3.67724627246997365226688157246, −2.96899550574724924062191494725, −1.33881361221283851389659702196,
1.33881361221283851389659702196, 2.96899550574724924062191494725, 3.67724627246997365226688157246, 4.86432200548533070772898966671, 6.74022801205435713217253405932, 7.893132894470447775775084838663, 8.217702324866974658776318812029, 9.117083252204804305110323292738, 10.18412326019096677684076639157, 11.22933308702922281383284913452