L(s) = 1 | − i·3-s + (−1.52 + 1.63i)5-s + 2.82i·7-s − 9-s − 1.05·11-s − i·13-s + (1.63 + 1.52i)15-s + 7.14i·17-s − 6.61·19-s + 2.82·21-s − 3.49i·23-s + (−0.332 − 4.98i)25-s + i·27-s − 4.82·29-s + 9.65·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.683 + 0.730i)5-s + 1.06i·7-s − 0.333·9-s − 0.318·11-s − 0.277i·13-s + (0.421 + 0.394i)15-s + 1.73i·17-s − 1.51·19-s + 0.617·21-s − 0.728i·23-s + (−0.0664 − 0.997i)25-s + 0.192i·27-s − 0.896·29-s + 1.73·31-s + ⋯ |
Λ(s)=(=(3120s/2ΓC(s)L(s)(−0.683+0.730i)Λ(2−s)
Λ(s)=(=(3120s/2ΓC(s+1/2)L(s)(−0.683+0.730i)Λ(1−s)
Degree: |
2 |
Conductor: |
3120
= 24⋅3⋅5⋅13
|
Sign: |
−0.683+0.730i
|
Analytic conductor: |
24.9133 |
Root analytic conductor: |
4.99132 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3120(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3120, ( :1/2), −0.683+0.730i)
|
Particular Values
L(1) |
≈ |
0.1948851270 |
L(21) |
≈ |
0.1948851270 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
| 5 | 1+(1.52−1.63i)T |
| 13 | 1+iT |
good | 7 | 1−2.82iT−7T2 |
| 11 | 1+1.05T+11T2 |
| 17 | 1−7.14iT−17T2 |
| 19 | 1+6.61T+19T2 |
| 23 | 1+3.49iT−23T2 |
| 29 | 1+4.82T+29T2 |
| 31 | 1−9.65T+31T2 |
| 37 | 1−8.11iT−37T2 |
| 41 | 1+3.26T+41T2 |
| 43 | 1+7.44iT−43T2 |
| 47 | 1+11.3iT−47T2 |
| 53 | 1+4.53iT−53T2 |
| 59 | 1−1.05T+59T2 |
| 61 | 1+7.97T+61T2 |
| 67 | 1+1.46iT−67T2 |
| 71 | 1+0.845T+71T2 |
| 73 | 1+9.28iT−73T2 |
| 79 | 1−6.85T+79T2 |
| 83 | 1−7.97iT−83T2 |
| 89 | 1+0.139T+89T2 |
| 97 | 1+6.93iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.402407361315103793124230735030, −7.85311718455695404659388256840, −6.69035395019837956672926682602, −6.37501365657182000387913973884, −5.54088866960617883482889753005, −4.45172146515037995679086453012, −3.54343448025242013807414623992, −2.58896335430893605521109856622, −1.87809108011991915347181844556, −0.06676320228470484738520541032,
1.06623437779932593396757941156, 2.59083435534561477255637643749, 3.64672352181339885601468195452, 4.42632356399380836381523050340, 4.78786738971404626286941693017, 5.83083046546918505706731291634, 6.86215367370877749295511865189, 7.59874935111427237945299584349, 8.131590339311971337344660529255, 9.134697437031830259140441140198