Properties

Label 2-3120-5.4-c1-0-45
Degree $2$
Conductor $3120$
Sign $-0.683 + 0.730i$
Analytic cond. $24.9133$
Root an. cond. $4.99132$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + (−1.52 + 1.63i)5-s + 2.82i·7-s − 9-s − 1.05·11-s i·13-s + (1.63 + 1.52i)15-s + 7.14i·17-s − 6.61·19-s + 2.82·21-s − 3.49i·23-s + (−0.332 − 4.98i)25-s + i·27-s − 4.82·29-s + 9.65·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + (−0.683 + 0.730i)5-s + 1.06i·7-s − 0.333·9-s − 0.318·11-s − 0.277i·13-s + (0.421 + 0.394i)15-s + 1.73i·17-s − 1.51·19-s + 0.617·21-s − 0.728i·23-s + (−0.0664 − 0.997i)25-s + 0.192i·27-s − 0.896·29-s + 1.73·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.683 + 0.730i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.683 + 0.730i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3120\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 13\)
Sign: $-0.683 + 0.730i$
Analytic conductor: \(24.9133\)
Root analytic conductor: \(4.99132\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3120} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3120,\ (\ :1/2),\ -0.683 + 0.730i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1948851270\)
\(L(\frac12)\) \(\approx\) \(0.1948851270\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 + (1.52 - 1.63i)T \)
13 \( 1 + iT \)
good7 \( 1 - 2.82iT - 7T^{2} \)
11 \( 1 + 1.05T + 11T^{2} \)
17 \( 1 - 7.14iT - 17T^{2} \)
19 \( 1 + 6.61T + 19T^{2} \)
23 \( 1 + 3.49iT - 23T^{2} \)
29 \( 1 + 4.82T + 29T^{2} \)
31 \( 1 - 9.65T + 31T^{2} \)
37 \( 1 - 8.11iT - 37T^{2} \)
41 \( 1 + 3.26T + 41T^{2} \)
43 \( 1 + 7.44iT - 43T^{2} \)
47 \( 1 + 11.3iT - 47T^{2} \)
53 \( 1 + 4.53iT - 53T^{2} \)
59 \( 1 - 1.05T + 59T^{2} \)
61 \( 1 + 7.97T + 61T^{2} \)
67 \( 1 + 1.46iT - 67T^{2} \)
71 \( 1 + 0.845T + 71T^{2} \)
73 \( 1 + 9.28iT - 73T^{2} \)
79 \( 1 - 6.85T + 79T^{2} \)
83 \( 1 - 7.97iT - 83T^{2} \)
89 \( 1 + 0.139T + 89T^{2} \)
97 \( 1 + 6.93iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.402407361315103793124230735030, −7.85311718455695404659388256840, −6.69035395019837956672926682602, −6.37501365657182000387913973884, −5.54088866960617883482889753005, −4.45172146515037995679086453012, −3.54343448025242013807414623992, −2.58896335430893605521109856622, −1.87809108011991915347181844556, −0.06676320228470484738520541032, 1.06623437779932593396757941156, 2.59083435534561477255637643749, 3.64672352181339885601468195452, 4.42632356399380836381523050340, 4.78786738971404626286941693017, 5.83083046546918505706731291634, 6.86215367370877749295511865189, 7.59874935111427237945299584349, 8.131590339311971337344660529255, 9.134697437031830259140441140198

Graph of the $Z$-function along the critical line