Properties

Label 2-3174-1.1-c1-0-43
Degree $2$
Conductor $3174$
Sign $1$
Analytic cond. $25.3445$
Root an. cond. $5.03433$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 1.73·7-s + 8-s + 9-s + 1.73·11-s + 12-s + 4·13-s + 1.73·14-s + 16-s − 3.46·17-s + 18-s + 1.73·21-s + 1.73·22-s + 24-s − 5·25-s + 4·26-s + 27-s + 1.73·28-s + 3·29-s + 7·31-s + 32-s + 1.73·33-s − 3.46·34-s + 36-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.408·6-s + 0.654·7-s + 0.353·8-s + 0.333·9-s + 0.522·11-s + 0.288·12-s + 1.10·13-s + 0.462·14-s + 0.250·16-s − 0.840·17-s + 0.235·18-s + 0.377·21-s + 0.369·22-s + 0.204·24-s − 25-s + 0.784·26-s + 0.192·27-s + 0.327·28-s + 0.557·29-s + 1.25·31-s + 0.176·32-s + 0.301·33-s − 0.594·34-s + 0.166·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3174 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3174 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3174\)    =    \(2 \cdot 3 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(25.3445\)
Root analytic conductor: \(5.03433\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3174,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.340676908\)
\(L(\frac12)\) \(\approx\) \(4.340676908\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
23 \( 1 \)
good5 \( 1 + 5T^{2} \)
7 \( 1 - 1.73T + 7T^{2} \)
11 \( 1 - 1.73T + 11T^{2} \)
13 \( 1 - 4T + 13T^{2} \)
17 \( 1 + 3.46T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
29 \( 1 - 3T + 29T^{2} \)
31 \( 1 - 7T + 31T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 - 12T + 41T^{2} \)
43 \( 1 + 10.3T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 8.66T + 53T^{2} \)
59 \( 1 - 9T + 59T^{2} \)
61 \( 1 + 6.92T + 61T^{2} \)
67 \( 1 + 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + 11T + 73T^{2} \)
79 \( 1 - 5.19T + 79T^{2} \)
83 \( 1 + 1.73T + 83T^{2} \)
89 \( 1 + 10.3T + 89T^{2} \)
97 \( 1 - 15.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.487127107700892455625944750421, −8.058924696964026036028443382179, −7.07864963132833544211141051169, −6.37358640444479522080927836729, −5.65675921960951512814730703112, −4.53936273533095992768000041935, −4.10406205637239148045407028212, −3.15293173428103939617301384509, −2.17474328382894297088108515876, −1.22987364841348953849682824094, 1.22987364841348953849682824094, 2.17474328382894297088108515876, 3.15293173428103939617301384509, 4.10406205637239148045407028212, 4.53936273533095992768000041935, 5.65675921960951512814730703112, 6.37358640444479522080927836729, 7.07864963132833544211141051169, 8.058924696964026036028443382179, 8.487127107700892455625944750421

Graph of the $Z$-function along the critical line