L(s) = 1 | + (1.45 + 1.37i)2-s + (0.232 + 3.99i)4-s + 4.37·5-s − 2.13i·7-s + (−5.14 + 6.12i)8-s + (6.36 + 6.00i)10-s + 12.6i·11-s + 9.26·13-s + (2.93 − 3.10i)14-s + (−15.8 + 1.85i)16-s + 14.6·17-s + 34.5i·19-s + (1.01 + 17.4i)20-s + (−17.3 + 18.3i)22-s − 40.7i·23-s + ⋯ |
L(s) = 1 | + (0.727 + 0.686i)2-s + (0.0581 + 0.998i)4-s + 0.874·5-s − 0.305i·7-s + (−0.642 + 0.766i)8-s + (0.636 + 0.600i)10-s + 1.14i·11-s + 0.712·13-s + (0.209 − 0.221i)14-s + (−0.993 + 0.116i)16-s + 0.861·17-s + 1.81i·19-s + (0.0508 + 0.873i)20-s + (−0.787 + 0.834i)22-s − 1.77i·23-s + ⋯ |
Λ(s)=(=(324s/2ΓC(s)L(s)(−0.0581−0.998i)Λ(3−s)
Λ(s)=(=(324s/2ΓC(s+1)L(s)(−0.0581−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
324
= 22⋅34
|
Sign: |
−0.0581−0.998i
|
Analytic conductor: |
8.82836 |
Root analytic conductor: |
2.97125 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ324(163,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 324, ( :1), −0.0581−0.998i)
|
Particular Values
L(23) |
≈ |
1.88824+2.00145i |
L(21) |
≈ |
1.88824+2.00145i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.45−1.37i)T |
| 3 | 1 |
good | 5 | 1−4.37T+25T2 |
| 7 | 1+2.13iT−49T2 |
| 11 | 1−12.6iT−121T2 |
| 13 | 1−9.26T+169T2 |
| 17 | 1−14.6T+289T2 |
| 19 | 1−34.5iT−361T2 |
| 23 | 1+40.7iT−529T2 |
| 29 | 1−19.0T+841T2 |
| 31 | 1+0.993iT−961T2 |
| 37 | 1+66.4T+1.36e3T2 |
| 41 | 1−25.8T+1.68e3T2 |
| 43 | 1−42.1iT−1.84e3T2 |
| 47 | 1+34.7iT−2.20e3T2 |
| 53 | 1+12.2T+2.80e3T2 |
| 59 | 1+56.7iT−3.48e3T2 |
| 61 | 1−73.7T+3.72e3T2 |
| 67 | 1+95.1iT−4.48e3T2 |
| 71 | 1+75.5iT−5.04e3T2 |
| 73 | 1+56.7T+5.32e3T2 |
| 79 | 1+74.5iT−6.24e3T2 |
| 83 | 1+65.4iT−6.88e3T2 |
| 89 | 1−150.T+7.92e3T2 |
| 97 | 1+112.T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.12090024968682081935254245669, −10.57297707158069448459228521834, −9.854785030581807334780179564798, −8.592408174335938519109175426896, −7.68220310011742659946544154724, −6.57271440882886449156759966368, −5.81899948362685481559376816154, −4.70625366319570913444676343566, −3.55468903140619532566820123521, −1.95920033568331579770233306318,
1.15731195499420197718237707953, 2.64612403004092162151166691107, 3.72201226965349808853110949283, 5.34339344972764106516134379000, 5.79907859752791450625678988083, 6.98469966510434410691474120148, 8.673146225890591678153792421864, 9.428956038571983120438217875899, 10.41297887800152199954822932100, 11.25783316485745392430178350290