L(s) = 1 | + (1.45 + 1.37i)2-s + (0.232 + 3.99i)4-s + 4.37·5-s − 2.13i·7-s + (−5.14 + 6.12i)8-s + (6.36 + 6.00i)10-s + 12.6i·11-s + 9.26·13-s + (2.93 − 3.10i)14-s + (−15.8 + 1.85i)16-s + 14.6·17-s + 34.5i·19-s + (1.01 + 17.4i)20-s + (−17.3 + 18.3i)22-s − 40.7i·23-s + ⋯ |
L(s) = 1 | + (0.727 + 0.686i)2-s + (0.0581 + 0.998i)4-s + 0.874·5-s − 0.305i·7-s + (−0.642 + 0.766i)8-s + (0.636 + 0.600i)10-s + 1.14i·11-s + 0.712·13-s + (0.209 − 0.221i)14-s + (−0.993 + 0.116i)16-s + 0.861·17-s + 1.81i·19-s + (0.0508 + 0.873i)20-s + (−0.787 + 0.834i)22-s − 1.77i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0581 - 0.998i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0581 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.88824 + 2.00145i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.88824 + 2.00145i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.45 - 1.37i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 4.37T + 25T^{2} \) |
| 7 | \( 1 + 2.13iT - 49T^{2} \) |
| 11 | \( 1 - 12.6iT - 121T^{2} \) |
| 13 | \( 1 - 9.26T + 169T^{2} \) |
| 17 | \( 1 - 14.6T + 289T^{2} \) |
| 19 | \( 1 - 34.5iT - 361T^{2} \) |
| 23 | \( 1 + 40.7iT - 529T^{2} \) |
| 29 | \( 1 - 19.0T + 841T^{2} \) |
| 31 | \( 1 + 0.993iT - 961T^{2} \) |
| 37 | \( 1 + 66.4T + 1.36e3T^{2} \) |
| 41 | \( 1 - 25.8T + 1.68e3T^{2} \) |
| 43 | \( 1 - 42.1iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 34.7iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 12.2T + 2.80e3T^{2} \) |
| 59 | \( 1 + 56.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 73.7T + 3.72e3T^{2} \) |
| 67 | \( 1 + 95.1iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 75.5iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 56.7T + 5.32e3T^{2} \) |
| 79 | \( 1 + 74.5iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 65.4iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 150.T + 7.92e3T^{2} \) |
| 97 | \( 1 + 112.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.12090024968682081935254245669, −10.57297707158069448459228521834, −9.854785030581807334780179564798, −8.592408174335938519109175426896, −7.68220310011742659946544154724, −6.57271440882886449156759966368, −5.81899948362685481559376816154, −4.70625366319570913444676343566, −3.55468903140619532566820123521, −1.95920033568331579770233306318,
1.15731195499420197718237707953, 2.64612403004092162151166691107, 3.72201226965349808853110949283, 5.34339344972764106516134379000, 5.79907859752791450625678988083, 6.98469966510434410691474120148, 8.673146225890591678153792421864, 9.428956038571983120438217875899, 10.41297887800152199954822932100, 11.25783316485745392430178350290