L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (−0.866 − 0.5i)5-s + 0.999i·8-s + (−0.499 − 0.866i)10-s + (−0.5 + 0.866i)16-s + 1.73·17-s + 1.73i·19-s − 0.999i·20-s + (0.866 − 1.5i)23-s + (0.499 + 0.866i)25-s + (−0.5 + 0.866i)31-s + (−0.866 + 0.499i)32-s + (1.49 + 0.866i)34-s + (−0.866 + 1.49i)38-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (−0.866 − 0.5i)5-s + 0.999i·8-s + (−0.499 − 0.866i)10-s + (−0.5 + 0.866i)16-s + 1.73·17-s + 1.73i·19-s − 0.999i·20-s + (0.866 − 1.5i)23-s + (0.499 + 0.866i)25-s + (−0.5 + 0.866i)31-s + (−0.866 + 0.499i)32-s + (1.49 + 0.866i)34-s + (−0.866 + 1.49i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.865602891\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.865602891\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
good | 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - 1.73T + T^{2} \) |
| 19 | \( 1 - 1.73iT - T^{2} \) |
| 23 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - iT - T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.553878682989301208468220561294, −8.146273068801059516560121516847, −7.48306610621289982435207642923, −6.75168984452561472778122541531, −5.78320205913641770868145414206, −5.20105013387499800074080846780, −4.34320634627157855201372412701, −3.61666391580642632152600668482, −2.91420861413574966714953470237, −1.39946721765067327501956454241,
0.966762182452367038959833914728, 2.38658944902249868862699106629, 3.30861555030007517803080849281, 3.74629247742254120842019771332, 4.86588434927753064853923439152, 5.40736776190717007796477326596, 6.39262453117356248693827462754, 7.24428023627683891989971176666, 7.59728141348824773390490575469, 8.759346748622231336065147496119