L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (−0.866 − 0.5i)5-s + 0.999i·8-s + (−0.499 − 0.866i)10-s + (−0.5 + 0.866i)16-s + 1.73·17-s + 1.73i·19-s − 0.999i·20-s + (0.866 − 1.5i)23-s + (0.499 + 0.866i)25-s + (−0.5 + 0.866i)31-s + (−0.866 + 0.499i)32-s + (1.49 + 0.866i)34-s + (−0.866 + 1.49i)38-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (−0.866 − 0.5i)5-s + 0.999i·8-s + (−0.499 − 0.866i)10-s + (−0.5 + 0.866i)16-s + 1.73·17-s + 1.73i·19-s − 0.999i·20-s + (0.866 − 1.5i)23-s + (0.499 + 0.866i)25-s + (−0.5 + 0.866i)31-s + (−0.866 + 0.499i)32-s + (1.49 + 0.866i)34-s + (−0.866 + 1.49i)38-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.342−0.939i)Λ(1−s)
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.342−0.939i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
0.342−0.939i
|
Analytic conductor: |
1.61697 |
Root analytic conductor: |
1.27160 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(1349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :0), 0.342−0.939i)
|
Particular Values
L(21) |
≈ |
1.865602891 |
L(21) |
≈ |
1.865602891 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866−0.5i)T |
| 3 | 1 |
| 5 | 1+(0.866+0.5i)T |
good | 7 | 1+(0.5−0.866i)T2 |
| 11 | 1+(−0.5+0.866i)T2 |
| 13 | 1+(−0.5−0.866i)T2 |
| 17 | 1−1.73T+T2 |
| 19 | 1−1.73iT−T2 |
| 23 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 29 | 1+(−0.5+0.866i)T2 |
| 31 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+T2 |
| 41 | 1+(0.5+0.866i)T2 |
| 43 | 1+(−0.5+0.866i)T2 |
| 47 | 1+(−0.5+0.866i)T2 |
| 53 | 1−iT−T2 |
| 59 | 1+(−0.5−0.866i)T2 |
| 61 | 1+(−1.5+0.866i)T+(0.5−0.866i)T2 |
| 67 | 1+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 83 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.553878682989301208468220561294, −8.146273068801059516560121516847, −7.48306610621289982435207642923, −6.75168984452561472778122541531, −5.78320205913641770868145414206, −5.20105013387499800074080846780, −4.34320634627157855201372412701, −3.61666391580642632152600668482, −2.91420861413574966714953470237, −1.39946721765067327501956454241,
0.966762182452367038959833914728, 2.38658944902249868862699106629, 3.30861555030007517803080849281, 3.74629247742254120842019771332, 4.86588434927753064853923439152, 5.40736776190717007796477326596, 6.39262453117356248693827462754, 7.24428023627683891989971176666, 7.59728141348824773390490575469, 8.759346748622231336065147496119