Properties

Label 4-3300e2-1.1-c1e2-0-11
Degree $4$
Conductor $10890000$
Sign $1$
Analytic cond. $694.355$
Root an. cond. $5.13328$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9-s + 2·11-s − 4·19-s + 16·31-s + 10·49-s + 24·59-s + 4·61-s + 20·79-s + 81-s + 12·89-s − 2·99-s + 20·109-s + 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 4·171-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 1/3·9-s + 0.603·11-s − 0.917·19-s + 2.87·31-s + 10/7·49-s + 3.12·59-s + 0.512·61-s + 2.25·79-s + 1/9·81-s + 1.27·89-s − 0.201·99-s + 1.91·109-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.305·171-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10890000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10890000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10890000\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(694.355\)
Root analytic conductor: \(5.13328\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 10890000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.213814817\)
\(L(\frac12)\) \(\approx\) \(3.213814817\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
11$C_1$ \( ( 1 - T )^{2} \)
good7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.749883580812812006165559593518, −8.417993999122107958994227919729, −8.023050242787469619107936975439, −8.016855414645358646631839727317, −7.14416415361375159744492169209, −6.98800988925809211714705530259, −6.48555567801811800575149277367, −6.38428292344898787151856786810, −5.65838985957645652872963388491, −5.63342819774202636020641213180, −4.88393883460047544735807971026, −4.60515657598041915143825482996, −4.15989753722274716419564127055, −3.80083768045080560135210661035, −3.26373092169547735242941718306, −2.79981776618904306742564714308, −2.16607851583041693523935364165, −2.03063919585748110170271746478, −0.839488565553105783029531608823, −0.77154781730770278048086316344, 0.77154781730770278048086316344, 0.839488565553105783029531608823, 2.03063919585748110170271746478, 2.16607851583041693523935364165, 2.79981776618904306742564714308, 3.26373092169547735242941718306, 3.80083768045080560135210661035, 4.15989753722274716419564127055, 4.60515657598041915143825482996, 4.88393883460047544735807971026, 5.63342819774202636020641213180, 5.65838985957645652872963388491, 6.38428292344898787151856786810, 6.48555567801811800575149277367, 6.98800988925809211714705530259, 7.14416415361375159744492169209, 8.016855414645358646631839727317, 8.023050242787469619107936975439, 8.417993999122107958994227919729, 8.749883580812812006165559593518

Graph of the $Z$-function along the critical line