L(s) = 1 | + (0.130 − 0.991i)2-s + (−0.965 − 0.258i)4-s + (−0.0255 − 0.389i)5-s + (−0.382 + 0.923i)8-s + (0.793 − 0.608i)9-s + (−0.389 − 0.0255i)10-s + (1 − i)13-s + (0.866 + 0.5i)16-s + (−0.608 + 0.793i)17-s + (−0.499 − 0.866i)18-s + (−0.0761 + 0.382i)20-s + (0.840 − 0.110i)25-s + (−0.860 − 1.12i)26-s + (−0.324 + 0.216i)29-s + (0.608 − 0.793i)32-s + ⋯ |
L(s) = 1 | + (0.130 − 0.991i)2-s + (−0.965 − 0.258i)4-s + (−0.0255 − 0.389i)5-s + (−0.382 + 0.923i)8-s + (0.793 − 0.608i)9-s + (−0.389 − 0.0255i)10-s + (1 − i)13-s + (0.866 + 0.5i)16-s + (−0.608 + 0.793i)17-s + (−0.499 − 0.866i)18-s + (−0.0761 + 0.382i)20-s + (0.840 − 0.110i)25-s + (−0.860 − 1.12i)26-s + (−0.324 + 0.216i)29-s + (0.608 − 0.793i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.622 + 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.622 + 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.274313082\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.274313082\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.130 + 0.991i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (0.608 - 0.793i)T \) |
good | 3 | \( 1 + (-0.793 + 0.608i)T^{2} \) |
| 5 | \( 1 + (0.0255 + 0.389i)T + (-0.991 + 0.130i)T^{2} \) |
| 11 | \( 1 + (-0.130 + 0.991i)T^{2} \) |
| 13 | \( 1 + (-1 + i)T - iT^{2} \) |
| 19 | \( 1 + (-0.965 - 0.258i)T^{2} \) |
| 23 | \( 1 + (0.793 + 0.608i)T^{2} \) |
| 29 | \( 1 + (0.324 - 0.216i)T + (0.382 - 0.923i)T^{2} \) |
| 31 | \( 1 + (0.793 - 0.608i)T^{2} \) |
| 37 | \( 1 + (-1.29 + 1.47i)T + (-0.130 - 0.991i)T^{2} \) |
| 41 | \( 1 + (1.38 + 0.923i)T + (0.382 + 0.923i)T^{2} \) |
| 43 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (-0.607 - 0.465i)T + (0.258 + 0.965i)T^{2} \) |
| 59 | \( 1 + (0.965 - 0.258i)T^{2} \) |
| 61 | \( 1 + (-0.491 - 0.996i)T + (-0.608 + 0.793i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 73 | \( 1 + (1.75 + 0.867i)T + (0.608 + 0.793i)T^{2} \) |
| 79 | \( 1 + (-0.793 - 0.608i)T^{2} \) |
| 83 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + (1.08 + 1.63i)T + (-0.382 + 0.923i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.778699067311722680969833270258, −8.072508069634562084428029082562, −7.07049008838614877730186898240, −6.05744567489600436833906020914, −5.43555782152308112627401244366, −4.37563164199374897496334777162, −3.85813300750595818213577474686, −2.98704459451213934769777336029, −1.78933252098970345433658068612, −0.845438977943866266081153557075,
1.40339488239027514640298440148, 2.80349223761986080950328725559, 3.88365303596113793809872778022, 4.58108621914027522718971557427, 5.23554817717457881134931217817, 6.42344234967775147378552837666, 6.69700430254564152534962938719, 7.46212816539519560917453831788, 8.246292172643835078955355875362, 8.884535617968550497803685380961