L(s) = 1 | + (1.26 − 1.26i)3-s + (0.707 − 0.707i)5-s + (−3.70 − 3.70i)7-s − 0.222i·9-s + (−3.73 − 3.73i)11-s + 2.63·13-s − 1.79i·15-s + (4.12 + 0.0118i)17-s + 4.31i·19-s − 9.39·21-s + (2.94 + 2.94i)23-s − 1.00i·25-s + (3.52 + 3.52i)27-s + (1.80 − 1.80i)29-s + (2.12 − 2.12i)31-s + ⋯ |
L(s) = 1 | + (0.732 − 0.732i)3-s + (0.316 − 0.316i)5-s + (−1.39 − 1.39i)7-s − 0.0742i·9-s + (−1.12 − 1.12i)11-s + 0.731·13-s − 0.463i·15-s + (0.999 + 0.00286i)17-s + 0.989i·19-s − 2.04·21-s + (0.614 + 0.614i)23-s − 0.200i·25-s + (0.678 + 0.678i)27-s + (0.334 − 0.334i)29-s + (0.382 − 0.382i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.125 + 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.125 + 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.965220 - 1.09448i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.965220 - 1.09448i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 + (-4.12 - 0.0118i)T \) |
good | 3 | \( 1 + (-1.26 + 1.26i)T - 3iT^{2} \) |
| 7 | \( 1 + (3.70 + 3.70i)T + 7iT^{2} \) |
| 11 | \( 1 + (3.73 + 3.73i)T + 11iT^{2} \) |
| 13 | \( 1 - 2.63T + 13T^{2} \) |
| 19 | \( 1 - 4.31iT - 19T^{2} \) |
| 23 | \( 1 + (-2.94 - 2.94i)T + 23iT^{2} \) |
| 29 | \( 1 + (-1.80 + 1.80i)T - 29iT^{2} \) |
| 31 | \( 1 + (-2.12 + 2.12i)T - 31iT^{2} \) |
| 37 | \( 1 + (-6.69 + 6.69i)T - 37iT^{2} \) |
| 41 | \( 1 + (-0.956 - 0.956i)T + 41iT^{2} \) |
| 43 | \( 1 - 0.613iT - 43T^{2} \) |
| 47 | \( 1 + 5.18T + 47T^{2} \) |
| 53 | \( 1 + 1.77iT - 53T^{2} \) |
| 59 | \( 1 + 7.97iT - 59T^{2} \) |
| 61 | \( 1 + (2.57 + 2.57i)T + 61iT^{2} \) |
| 67 | \( 1 - 11.7T + 67T^{2} \) |
| 71 | \( 1 + (5.08 - 5.08i)T - 71iT^{2} \) |
| 73 | \( 1 + (4.58 - 4.58i)T - 73iT^{2} \) |
| 79 | \( 1 + (-1.26 - 1.26i)T + 79iT^{2} \) |
| 83 | \( 1 - 12.8iT - 83T^{2} \) |
| 89 | \( 1 + 3.34T + 89T^{2} \) |
| 97 | \( 1 + (3.27 - 3.27i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.11306882215968833899333758295, −10.27963710836153313436837613571, −9.488925611411150932050029443515, −8.181870173043525026302160494794, −7.68642205661409764378057890804, −6.53920897530899094799321802083, −5.56766032603540251130336067516, −3.75894987790921083025193244757, −2.89134516898832585890231052238, −0.990845285173534557099795291489,
2.65128401700187413707885631520, 3.15426306030750436996835701625, 4.77567665017906543833483770052, 5.94258997236102453405363642714, 6.89455251488601225530578501029, 8.333905989276796792013865351767, 9.181431502629413493038864348094, 9.811028623792014829995911656456, 10.47258106859596018039329251299, 11.92804956276012162111366347345