Properties

Label 2-35-1.1-c9-0-5
Degree $2$
Conductor $35$
Sign $1$
Analytic cond. $18.0262$
Root an. cond. $4.24573$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.68·2-s − 7.83·3-s − 490.·4-s − 625·5-s − 36.6·6-s + 2.40e3·7-s − 4.69e3·8-s − 1.96e4·9-s − 2.92e3·10-s + 6.12e4·11-s + 3.84e3·12-s + 1.27e5·13-s + 1.12e4·14-s + 4.89e3·15-s + 2.28e5·16-s − 3.74e5·17-s − 9.18e4·18-s + 3.51e5·19-s + 3.06e5·20-s − 1.88e4·21-s + 2.86e5·22-s + 1.55e6·23-s + 3.67e4·24-s + 3.90e5·25-s + 5.98e5·26-s + 3.08e5·27-s − 1.17e6·28-s + ⋯
L(s)  = 1  + 0.206·2-s − 0.0558·3-s − 0.957·4-s − 0.447·5-s − 0.0115·6-s + 0.377·7-s − 0.404·8-s − 0.996·9-s − 0.0925·10-s + 1.26·11-s + 0.0534·12-s + 1.24·13-s + 0.0781·14-s + 0.0249·15-s + 0.873·16-s − 1.08·17-s − 0.206·18-s + 0.618·19-s + 0.428·20-s − 0.0211·21-s + 0.261·22-s + 1.16·23-s + 0.0226·24-s + 0.200·25-s + 0.256·26-s + 0.111·27-s − 0.361·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $1$
Analytic conductor: \(18.0262\)
Root analytic conductor: \(4.24573\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.500455391\)
\(L(\frac12)\) \(\approx\) \(1.500455391\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 625T \)
7 \( 1 - 2.40e3T \)
good2 \( 1 - 4.68T + 512T^{2} \)
3 \( 1 + 7.83T + 1.96e4T^{2} \)
11 \( 1 - 6.12e4T + 2.35e9T^{2} \)
13 \( 1 - 1.27e5T + 1.06e10T^{2} \)
17 \( 1 + 3.74e5T + 1.18e11T^{2} \)
19 \( 1 - 3.51e5T + 3.22e11T^{2} \)
23 \( 1 - 1.55e6T + 1.80e12T^{2} \)
29 \( 1 - 3.12e6T + 1.45e13T^{2} \)
31 \( 1 - 6.54e6T + 2.64e13T^{2} \)
37 \( 1 + 9.25e6T + 1.29e14T^{2} \)
41 \( 1 + 8.05e6T + 3.27e14T^{2} \)
43 \( 1 - 1.58e7T + 5.02e14T^{2} \)
47 \( 1 + 8.88e6T + 1.11e15T^{2} \)
53 \( 1 + 5.68e7T + 3.29e15T^{2} \)
59 \( 1 - 8.14e7T + 8.66e15T^{2} \)
61 \( 1 + 2.04e8T + 1.16e16T^{2} \)
67 \( 1 - 8.88e7T + 2.72e16T^{2} \)
71 \( 1 - 2.24e8T + 4.58e16T^{2} \)
73 \( 1 - 1.91e8T + 5.88e16T^{2} \)
79 \( 1 - 2.39e7T + 1.19e17T^{2} \)
83 \( 1 - 4.05e8T + 1.86e17T^{2} \)
89 \( 1 - 2.03e8T + 3.50e17T^{2} \)
97 \( 1 - 9.77e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.31229933959855414823111856959, −13.54697554992937124912407446891, −12.02648527071599864204168778327, −11.02569139384071029953096227765, −9.115993369649615658482087704142, −8.383427443423370046826559490756, −6.36163194583397904265974623366, −4.76905838600592736703370924403, −3.43165971573998681602855969436, −0.883107660759754934954296433948, 0.883107660759754934954296433948, 3.43165971573998681602855969436, 4.76905838600592736703370924403, 6.36163194583397904265974623366, 8.383427443423370046826559490756, 9.115993369649615658482087704142, 11.02569139384071029953096227765, 12.02648527071599864204168778327, 13.54697554992937124912407446891, 14.31229933959855414823111856959

Graph of the $Z$-function along the critical line