L(s) = 1 | − 2·3-s + 9-s + (3 + 1.41i)11-s + 5.65i·17-s + 8.48i·19-s + 5·25-s + 4·27-s + (−6 − 2.82i)33-s + 11.3i·41-s − 8.48i·43-s − 7·49-s − 11.3i·51-s − 16.9i·57-s + 6·59-s − 14·67-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 0.333·9-s + (0.904 + 0.426i)11-s + 1.37i·17-s + 1.94i·19-s + 25-s + 0.769·27-s + (−1.04 − 0.492i)33-s + 1.76i·41-s − 1.29i·43-s − 49-s − 1.58i·51-s − 2.24i·57-s + 0.781·59-s − 1.71·67-s + ⋯ |
Λ(s)=(=(352s/2ΓC(s)L(s)(0.426−0.904i)Λ(2−s)
Λ(s)=(=(352s/2ΓC(s+1/2)L(s)(0.426−0.904i)Λ(1−s)
Degree: |
2 |
Conductor: |
352
= 25⋅11
|
Sign: |
0.426−0.904i
|
Analytic conductor: |
2.81073 |
Root analytic conductor: |
1.67652 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ352(175,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 352, ( :1/2), 0.426−0.904i)
|
Particular Values
L(1) |
≈ |
0.694545+0.440437i |
L(21) |
≈ |
0.694545+0.440437i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(−3−1.41i)T |
good | 3 | 1+2T+3T2 |
| 5 | 1−5T2 |
| 7 | 1+7T2 |
| 13 | 1+13T2 |
| 17 | 1−5.65iT−17T2 |
| 19 | 1−8.48iT−19T2 |
| 23 | 1−23T2 |
| 29 | 1+29T2 |
| 31 | 1−31T2 |
| 37 | 1−37T2 |
| 41 | 1−11.3iT−41T2 |
| 43 | 1+8.48iT−43T2 |
| 47 | 1−47T2 |
| 53 | 1−53T2 |
| 59 | 1−6T+59T2 |
| 61 | 1+61T2 |
| 67 | 1+14T+67T2 |
| 71 | 1−71T2 |
| 73 | 1+16.9iT−73T2 |
| 79 | 1+79T2 |
| 83 | 1+2.82iT−83T2 |
| 89 | 1−18T+89T2 |
| 97 | 1−10T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.78564837200667383413496578252, −10.69630340124542091396161148176, −10.12212387802391454264212625168, −8.878008511181446347730900255814, −7.83628813223193838458185988316, −6.50066287610632994931038182472, −5.98742920335379963792988417187, −4.79528488318644548625366106906, −3.62988165438279953775200850743, −1.51828845451592432983997148942,
0.71747212566875794729493289639, 2.90341150757303136225476350856, 4.56185882949164792426677026649, 5.37579875239465540589284238388, 6.52660976618871657974873541775, 7.14693182699885038244888899715, 8.715914008706220274171438711728, 9.437006067333637949281575212086, 10.71754742669555316812319664663, 11.38335954939917094632035276231