L(s) = 1 | + (0.809 − 0.587i)5-s + (−0.587 − 1.80i)7-s + (0.809 + 0.587i)9-s + (0.951 − 0.309i)11-s + (0.690 − 0.951i)13-s + (−0.363 + 1.11i)19-s + 0.618i·23-s + (0.309 − 0.951i)25-s + (−1.53 − 1.11i)35-s + (0.5 + 1.53i)37-s + (−1.80 − 0.587i)41-s + 45-s + (−1.53 − 0.5i)47-s + (−2.11 + 1.53i)49-s + (0.5 + 0.363i)53-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)5-s + (−0.587 − 1.80i)7-s + (0.809 + 0.587i)9-s + (0.951 − 0.309i)11-s + (0.690 − 0.951i)13-s + (−0.363 + 1.11i)19-s + 0.618i·23-s + (0.309 − 0.951i)25-s + (−1.53 − 1.11i)35-s + (0.5 + 1.53i)37-s + (−1.80 − 0.587i)41-s + 45-s + (−1.53 − 0.5i)47-s + (−2.11 + 1.53i)49-s + (0.5 + 0.363i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.390 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.390 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.585527536\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.585527536\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (-0.951 + 0.309i)T \) |
good | 3 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 7 | \( 1 + (0.587 + 1.80i)T + (-0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.690 + 0.951i)T + (-0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (0.363 - 1.11i)T + (-0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 - 0.618iT - T^{2} \) |
| 29 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (1.80 + 0.587i)T + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (1.53 + 0.5i)T + (0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (-1.53 + 0.5i)T + (0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + 0.618T + T^{2} \) |
| 97 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.436217666059812598340756193646, −8.005762749782475995414284757461, −6.96106911714570252315393923780, −6.52681173091204338578352765301, −5.64007438610001870104187358505, −4.72923329213562940180422316588, −3.90574726922477277432624165240, −3.34572727922676105772049751080, −1.67353056220311728516967311008, −1.05357708852039984194172878090,
1.63059171100554535819381646973, 2.35925589389760663060398351774, 3.28673965271406362222481851105, 4.23687905022389256593228919142, 5.24822197338010558108078381992, 6.12716062532827025538393458133, 6.62856228867365634955686316706, 6.96128579666728409952220342120, 8.503457768548432462109165383072, 9.003560423026295774945726289651