L(s) = 1 | + (−0.984 − 0.173i)3-s + (0.939 + 0.342i)9-s + (0.984 + 1.70i)11-s + (0.592 − 1.62i)17-s + (−0.642 + 0.766i)19-s + (−0.173 + 0.984i)25-s + (−0.866 − 0.5i)27-s + (−0.673 − 1.85i)33-s + (−1.26 + 0.223i)41-s + (0.642 + 0.766i)43-s + (0.5 + 0.866i)49-s + (−0.866 + 1.5i)51-s + (0.766 − 0.642i)57-s + (−1.85 − 0.673i)59-s + (0.524 + 1.43i)67-s + ⋯ |
L(s) = 1 | + (−0.984 − 0.173i)3-s + (0.939 + 0.342i)9-s + (0.984 + 1.70i)11-s + (0.592 − 1.62i)17-s + (−0.642 + 0.766i)19-s + (−0.173 + 0.984i)25-s + (−0.866 − 0.5i)27-s + (−0.673 − 1.85i)33-s + (−1.26 + 0.223i)41-s + (0.642 + 0.766i)43-s + (0.5 + 0.866i)49-s + (−0.866 + 1.5i)51-s + (0.766 − 0.642i)57-s + (−1.85 − 0.673i)59-s + (0.524 + 1.43i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.796i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.796i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9085915699\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9085915699\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.984 + 0.173i)T \) |
| 19 | \( 1 + (0.642 - 0.766i)T \) |
good | 5 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.984 - 1.70i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 17 | \( 1 + (-0.592 + 1.62i)T + (-0.766 - 0.642i)T^{2} \) |
| 23 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 29 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (1.26 - 0.223i)T + (0.939 - 0.342i)T^{2} \) |
| 43 | \( 1 + (-0.642 - 0.766i)T + (-0.173 + 0.984i)T^{2} \) |
| 47 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 53 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 59 | \( 1 + (1.85 + 0.673i)T + (0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 67 | \( 1 + (-0.524 - 1.43i)T + (-0.766 + 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 73 | \( 1 + (-0.0603 - 0.342i)T + (-0.939 + 0.342i)T^{2} \) |
| 79 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (-0.642 + 1.11i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-1.70 - 0.300i)T + (0.939 + 0.342i)T^{2} \) |
| 97 | \( 1 + (-1.43 - 0.524i)T + (0.766 + 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.046177996000430152599418881754, −7.72417050364374406191145910916, −7.31427812042360150274331182320, −6.62952644180159345017646989457, −5.90036291239744746574374349583, −4.94031957492068916623235705917, −4.51075627322303465225344372698, −3.49778610977098627295068948667, −2.11723730331922405806782540303, −1.24062896913672562036949296670,
0.68529853637957071323424076704, 1.85086461583153684310014563429, 3.38882095797686306738419972778, 3.95080974156989587079909946634, 4.86084515338218338495273825090, 5.87642455379467619072930858915, 6.18730148648049152962670743626, 6.85324967163724525071091901285, 7.961146535835328700498458934862, 8.646729523464233782790298168360