Properties

Label 2-3648-456.365-c0-0-2
Degree 22
Conductor 36483648
Sign 0.6050.796i0.605 - 0.796i
Analytic cond. 1.820581.82058
Root an. cond. 1.349291.34929
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.984 − 0.173i)3-s + (0.939 + 0.342i)9-s + (0.984 + 1.70i)11-s + (0.592 − 1.62i)17-s + (−0.642 + 0.766i)19-s + (−0.173 + 0.984i)25-s + (−0.866 − 0.5i)27-s + (−0.673 − 1.85i)33-s + (−1.26 + 0.223i)41-s + (0.642 + 0.766i)43-s + (0.5 + 0.866i)49-s + (−0.866 + 1.5i)51-s + (0.766 − 0.642i)57-s + (−1.85 − 0.673i)59-s + (0.524 + 1.43i)67-s + ⋯
L(s)  = 1  + (−0.984 − 0.173i)3-s + (0.939 + 0.342i)9-s + (0.984 + 1.70i)11-s + (0.592 − 1.62i)17-s + (−0.642 + 0.766i)19-s + (−0.173 + 0.984i)25-s + (−0.866 − 0.5i)27-s + (−0.673 − 1.85i)33-s + (−1.26 + 0.223i)41-s + (0.642 + 0.766i)43-s + (0.5 + 0.866i)49-s + (−0.866 + 1.5i)51-s + (0.766 − 0.642i)57-s + (−1.85 − 0.673i)59-s + (0.524 + 1.43i)67-s + ⋯

Functional equation

Λ(s)=(3648s/2ΓC(s)L(s)=((0.6050.796i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.796i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3648s/2ΓC(s)L(s)=((0.6050.796i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.796i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 36483648    =    263192^{6} \cdot 3 \cdot 19
Sign: 0.6050.796i0.605 - 0.796i
Analytic conductor: 1.820581.82058
Root analytic conductor: 1.349291.34929
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3648(1505,)\chi_{3648} (1505, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 3648, ( :0), 0.6050.796i)(2,\ 3648,\ (\ :0),\ 0.605 - 0.796i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.90859156990.9085915699
L(12)L(\frac12) \approx 0.90859156990.9085915699
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
19 1+(0.6420.766i)T 1 + (0.642 - 0.766i)T
good5 1+(0.1730.984i)T2 1 + (0.173 - 0.984i)T^{2}
7 1+(0.50.866i)T2 1 + (-0.5 - 0.866i)T^{2}
11 1+(0.9841.70i)T+(0.5+0.866i)T2 1 + (-0.984 - 1.70i)T + (-0.5 + 0.866i)T^{2}
13 1+(0.939+0.342i)T2 1 + (0.939 + 0.342i)T^{2}
17 1+(0.592+1.62i)T+(0.7660.642i)T2 1 + (-0.592 + 1.62i)T + (-0.766 - 0.642i)T^{2}
23 1+(0.1730.984i)T2 1 + (-0.173 - 0.984i)T^{2}
29 1+(0.7660.642i)T2 1 + (0.766 - 0.642i)T^{2}
31 1+(0.50.866i)T2 1 + (-0.5 - 0.866i)T^{2}
37 1T2 1 - T^{2}
41 1+(1.260.223i)T+(0.9390.342i)T2 1 + (1.26 - 0.223i)T + (0.939 - 0.342i)T^{2}
43 1+(0.6420.766i)T+(0.173+0.984i)T2 1 + (-0.642 - 0.766i)T + (-0.173 + 0.984i)T^{2}
47 1+(0.766+0.642i)T2 1 + (-0.766 + 0.642i)T^{2}
53 1+(0.173+0.984i)T2 1 + (0.173 + 0.984i)T^{2}
59 1+(1.85+0.673i)T+(0.766+0.642i)T2 1 + (1.85 + 0.673i)T + (0.766 + 0.642i)T^{2}
61 1+(0.1730.984i)T2 1 + (-0.173 - 0.984i)T^{2}
67 1+(0.5241.43i)T+(0.766+0.642i)T2 1 + (-0.524 - 1.43i)T + (-0.766 + 0.642i)T^{2}
71 1+(0.173+0.984i)T2 1 + (-0.173 + 0.984i)T^{2}
73 1+(0.06030.342i)T+(0.939+0.342i)T2 1 + (-0.0603 - 0.342i)T + (-0.939 + 0.342i)T^{2}
79 1+(0.939+0.342i)T2 1 + (-0.939 + 0.342i)T^{2}
83 1+(0.642+1.11i)T+(0.50.866i)T2 1 + (-0.642 + 1.11i)T + (-0.5 - 0.866i)T^{2}
89 1+(1.700.300i)T+(0.939+0.342i)T2 1 + (-1.70 - 0.300i)T + (0.939 + 0.342i)T^{2}
97 1+(1.430.524i)T+(0.766+0.642i)T2 1 + (-1.43 - 0.524i)T + (0.766 + 0.642i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.046177996000430152599418881754, −7.72417050364374406191145910916, −7.31427812042360150274331182320, −6.62952644180159345017646989457, −5.90036291239744746574374349583, −4.94031957492068916623235705917, −4.51075627322303465225344372698, −3.49778610977098627295068948667, −2.11723730331922405806782540303, −1.24062896913672562036949296670, 0.68529853637957071323424076704, 1.85086461583153684310014563429, 3.38882095797686306738419972778, 3.95080974156989587079909946634, 4.86084515338218338495273825090, 5.87642455379467619072930858915, 6.18730148648049152962670743626, 6.85324967163724525071091901285, 7.961146535835328700498458934862, 8.646729523464233782790298168360

Graph of the ZZ-function along the critical line